Molecular Radius (molecular + radius)

Distribution by Scientific Domains


Selected Abstracts


Mechanisms of transjunctional transport of NaCl and water in proximal tubules of mammalian kidneys

ACTA PHYSIOLOGICA, Issue 1 2002
F. KIILArticle first published online: 30 APR 200
ABSTRACT Tight junctions and the intercellular space of proximal tubules are not accessible to direct measurements of fluid composition and transport rates, but morphological and functional data permit analysis of diffusion and osmosis causing transjunctional NaCl and water transport. In the S2 segment NaCl diffuses through tight junctions along a chloride gradient, but against a sodium gradient. Calculation in terms of modified Nernst,Fick diffusion equation after eliminating electrical terms shows that transport rates (300,500 pmol min,1 mm,1 tubule length) and transepithelial voltage of +2 mV are in agreement with observations. Diffusion coefficients are Dtj=1500 ,m2 s,1 in the S1 segment, and Dtj=90,100 ,m2 s,1 in the S2 segment where apical intercellular NaCl concentration is 132 mM, 1 mM below complete stop (Dtj=0 and Donnan equilibrium). Tight junctions with gap distance 6 Å are impermeable to mannitol (effective molecular radius 4 Å); reflection coefficients are ,=0.92 for NaHCO3 and ,=0.28 for NaCl, because of difference in anion size. The osmotic force is provided by a difference in effective transjunctional osmolality of 10 mOsm kg,1 in the S1 segment and 30 mOsm kg,1 in the S2 segment, where differences in transjunctional concentration contribute with 21 mOsm kg,1 for NaHCO3 and ,4 mOsm kg,1 for NaCl. Transjunctional difference of 30 mOsm kg,1 causes a volume flow of 2 nL min,1 mm,1 tubule length. Luminal mannitol concentration of 30 mM stops all volume flow and diffusive and convective transport of NaCl. In conclusion, transjunctional diffusion and osmosis along gradients generated by transcellular transport of other solutes account for all NaCl transport in proximal tubules. [source]


Diffusional properties of chitosan hydrogel membranes

JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 6 2001
Barbara Krajewska
Abstract Chitosan membranes were prepared by a solvent evaporation technique, followed by crosslinking with glutaraldehyde and coating with BSA. The effects of crosslinking and BSA coating on the pore structure of such prepared hydrogel chitosan membranes were determined. The diffusion rates of 12 non-electrolytes ranging in molecular radius between 2.5 and 14,Å through the membranes were measured, and the results were interpreted in terms of the capillary pore model and free volume model of solute diffusional transport through hydrogel membranes. Glutaraldehyde crosslinking was found to reduce the membrane water content and consequently the membrane pore size and surface porosity, whereas further BSA coating brought about the opposite effect. The latter effect lessened with an increase in glutaraldehyde pretreatment of the membranes. The optimal chitosan membrane preparation, compromising between the solute flux and membrane stability and durability was obtained when the membranes were crosslinked with glutaraldehyde at concentrations between 0.01 and 0.1% (w/w). The knowledge of transport properties and of physical strength of the membranes is of importance for the development of chitosan-based controlled release systems. © 2001 Society of Chemical Industry [source]


Kinetic Modeling of Non-Linear Polymerization

MACROMOLECULAR SYMPOSIA, Issue 1 2006
Mário Rui P. F. N. Costa
Abstract Recent developments of a method based upon population balances of generating functions of polymer chain length distributions (CLD) are presented. The calculation of the CLD and how to take into account chain length dependent reactivity are discussed. Prediction of polymer properties is also possible but only easily done for the average molecular radius of gyration; some results are presented for a radical polymerization including transfer to polymer and propagation with terminal double bonds. [source]


The Peritoneal Microcirculation in Peritoneal Dialysis

MICROCIRCULATION, Issue 5 2001
BENGT RIPPE
ABSTRACT This paper deals with the peritoneal microcirculation and with peritoneal exchange occurring in peritoneal dialysis (PD). The capillary wall is a major barrier to solute and water exchange across the peritoneal membrane. There is a bimodal size-selectivity of solute transport between blood and the peritoneal cavity, through pores of radius ,40,50 Å as well as through a very low number of large pores of radius ,250 Å. Furthermore, during glucose-induced osmosis during PD, nearly 40% of the total osmotic water flow occurs through molecular water channels, termed "aquaporin-1." This causes an inequality between 1,, and the sieving coefficient for small solutes, which is a key feature of the "threepore model" of peritoneal transport. The peritoneal interstitium, coupled in series with the capillary walls, markedly modifies small-solute transport and makes large-solute transport asymmetric. Thus, although severely restricted in the blood-to-peritoneal direction, the absorption of large solutes from the peritoneal cavity occurs at a high clearance rate (,1 mL/min), largely independent of molecular radius. True absorption of macromolecules to the blood via lymphatics, however, seems to be occurring at a rate of ,0.2 mL/min. Several controversial issues regarding transcapillary and transperitoneal exchange mechanisms are discussed in this paper. [source]


Effect of 50 Hz, 0.2 mT magnetic fields on RBC properties and heart functions of albino rats

BIOELECTROMAGNETICS, Issue 8 2003
Fadel M. Ali
Abstract In this work the effect of sinusoidal 50 Hz, 0.2 mT magnetic fields on the red blood cells (RBCs) and heart functions of Albino rats were investigated. Twenty-four male Albino rats were equally divided into four groups, A, B, C, and D. Animals from groups B were continuously exposed to the magnetic field for 15 days; and groups C and D, for 30 days. Group A was used as control. Animals from group D were kept after exposure to the magnetic field for a period of 45 days for delayed effect studies. The osmotic fragility and shape of RBCs' membrane and hemoglobin (Hb) structure tests were carried out for all groups. The dielectric relaxation of Hb molecules was measured in the frequency range of 0.1,10 MHz and the dielectric increment (,,), relaxation time (,), molecular radius (r), and Cole-Cole parameter (,) were calculated for all groups. The ECG was measured for all animals before and after exposure to the magnetic field. The results indicated that exposure of the animals to 50 Hz, 0.2 mT magnetic fields resulted in the decrease of RBCs membrane elasticity and permeability and changes in the molecular structure of Hb. The ECG of the exposed animals was considerably altered. The data also indicated that there was no sign of repair in the newly generated RBCs structure and the ECG after removing the animals from the magnetic field, which indicates that the blood generating system was severely injured. The injuries in the heart of the animals were attributed to the loss of some physiological functions of the RBCs as a result of exposures of the rats to the magnetic field. Bioelectromagnetics 24:535,545, 2003. © 2003 Wiley-Liss, Inc. [source]