Home About us Contact | |||
Molecular Phenotype (molecular + phenotype)
Selected AbstractsMolecular phenotype of Fragile X syndrome: FMRP, FXRPs, and protein targetsMICROSCOPY RESEARCH AND TECHNIQUE, Issue 3 2002Walter E. Kaufmann Abstract Fragile X syndrome (FraX) is one of the most prevalent genetic causes of mental retardation. FraX is associated with an unstable expansion of a polymorphism within the 5, untranslated region of the FMR1 gene. The main consequence of this mutation is a reduction in the levels of the gene product (FMRP). FMRP is an RNA-binding protein with multiple spliced variants (isoforms) and high levels of expression in a variety of tissues, including neurons. In the latter cells, it is localized not only to the perikaryon but also to dendrites and dendritic spines. FMRP belongs to a family of proteins that includes the Fragile X Related Proteins or FXRPs. FXRPs share high homology in their functional domains with FMRP, and also associate with mRNA and components of the protein synthesis apparatus. However, FXRPs do not have the same temporo-spatial pattern of distribution (and other properties) of FMRP. Immunochemical assays have confirmed that a functionally uncompensated FMRP deficit is the essence of the FraX molecular phenotype. Here, we report our preliminary study on FXRPs levels in leukocytes from FraX males. By immunoblotting, we found that a marked reduction in FMRP levels is associated with a modest increase in FXR1P and no changes in FXR2P levels. The consequences of this reduced FMRP expression on protein synthesis, in other words, the identification of FMRP targets, can be studied by different molecular approaches including protein interaction and proteomics methods. By two-dimensional gel electrophoresis, we showed that in FraX leukocytes there is a defect in acetylation that involves prominently the regulatory protein annexin-1. Extension of current studies of the molecular phenotype to more brain-relevant tissue samples, a wider range of proteomics-based methods, and correlative analyses of FMRP homologues and FMRP targets with multiple behavioral measures, will greatly expand our understanding of FraX pathogenesis and it will help to develop and monitor new therapeutic strategies. Microsc. Res. Tech. 57:135,144, 2002. © 2002 Wiley-Liss, Inc. [source] An update on apocrine lesions of the breastHISTOPATHOLOGY, Issue 1 2008F P O'Malley Apocrine change occurs in a spectrum of benign lesions in the female breast and is also demonstrated in a subgroup of in situ and invasive carcinomas. Recent research has focused on the molecular phenotype of both benign and malignant apocrine lesions. This review will briefly summarize the morphological characteristics and risk associations of the spectrum of apocrine proliferations, but will focus on the updated molecular studies of both in situ and invasive apocrine carcinomas. [source] Identifying a molecular phenotype for bone marrow stromal cells with in vivo bone-forming capacityJOURNAL OF BONE AND MINERAL RESEARCH, Issue 4 2010Kenneth H Larsen Abstract The ability of bone marrow stromal cells (BMSCs) to differentiate into osteoblasts is being exploited in cell-based therapy for repair of bone defects. However, the phenotype of ex vivo cultured BMSCs predicting their bone-forming capacity is not known. Thus we employed DNA microarrays comparing two human bone marrow stromal cell (hBMSC) populations: One is capable of in vivo heterotopic bone formation (hBMSC-TERT+Bone), and the other is not (hBMSC-TERT,Bone). Compared with hBMSC-TERT,Bone, the hBMSC-TERT+Bone cells had an increased overrepresentation of extracellular matrix genes (17% versus 5%) and a larger percentage of genes with predicted SP3 transcription factor,binding sites in their promoter region (21% versus 8%). On the other hand, hBMSC-TERT,Bone cells expressed a larger number of immune-response-related genes (26% versus 8%). In order to test for the predictive value of these markers, we studied the correlation between their expression levels in six different hBMSC-derived clones and the ability to form bone in vivo. We found a significant correlation for decorin, lysyl oxidase-like 4, natriuretic peptide receptor C, and tetranectin. No significant positive correlation was found for canonical osteoblastic markers Runx2, alkaline phosphatase, collagen type I, osteopontin, and bone sialoprotein. Prospective isolation of four additional hBMSC clones based on their expression levels of the molecular markers correlated with their in vivo bone-formation ability. In conclusion, our data suggest an in vitro molecular signature predictive for hBMSCs' in vivo bone-formation ability. Identifying more of these predictive markers would be very useful in the quality control of osteoblastic cells before use in therapy. © 2010 American Society for Bone and Mineral Research [source] Nesfatin-1 Influences the Excitability of Paraventricular Nucleus NeuronesJOURNAL OF NEUROENDOCRINOLOGY, Issue 2 2008C. J. Price Nesfatin-1 is a newly-discovered satiety peptide found in several nuclei of the hypothalamus, including the paraventricular nucleus. To begin to understand the physiological mechanisms underlying these satiety-inducing actions, we examined the effects of nesfatin-1 on the excitability of neurones in the paraventricular nucleus. Whole-cell current-clamp recordings from rat paraventricular nucleus neurones showed nesfatin-1 to have either hyperpolarising or depolarising effects on the majority of neurones tested. Both types of response were observed in neurones irrespective of classification based on electrophysiological fingerprint (magnocellular, neuroendocrine or pre-autonomic) or molecular phenotype (vasopressin, oxytocin, corticotrophin-releasing hormone, thyrotrophin-releasing hormone or vesicular glutamate transporter), determined using single cell reverse transcription-poylmerase chain reaction. Consequently, we provide the first evidence that this peptide, which is produced in the paraventricular nucleus, has effects on the membrane potential of a large proportion of different subpopulations of neurones located in this nucleus, and therefore identify nesfatin-1 as a potentially important regulator of paraventricular nucleus output. [source] Non-radioactive in situ detection of mRNA in ES cell-derived cardiomyocytes and in the developing heartMICROSCOPY RESEARCH AND TECHNIQUE, Issue 5 2002Arnoud C. Fijnvandraat Abstract Non-radioactive in situ hybridisation is an excellent method to visualise mRNA molecules within their topographical context. Recently we have reported a new non-radioactive in situ hybridisation procedure on tissue sections that is essentially based on the whole mount in situ hybridisation procedure. This method is superior in spatial resolution and sensitivity compared to the radioactive in situ hybridisation procedure. Generally, low levels of gene expression, such as found with the developmental onset of gene expression and in differentiating embryonic stem cells, are difficult to detect by in situ hybridisation. Here an application of the protocol is presented which is based on tyramide signal amplification, which enables the detection of very low abundant mRNAs. The significance of this method is two-fold: (1) the molecular phenotype of embryonic stem cell-derived cardiomyocytes can be examined at the cellular level with high sensitivity, and (2) the number of cells that express the gene of interest can be assessed. Microsc. Res. Tech. 58:387,394, 2002. © 2002 Wiley-Liss, Inc. [source] Molecular phenotype of Fragile X syndrome: FMRP, FXRPs, and protein targetsMICROSCOPY RESEARCH AND TECHNIQUE, Issue 3 2002Walter E. Kaufmann Abstract Fragile X syndrome (FraX) is one of the most prevalent genetic causes of mental retardation. FraX is associated with an unstable expansion of a polymorphism within the 5, untranslated region of the FMR1 gene. The main consequence of this mutation is a reduction in the levels of the gene product (FMRP). FMRP is an RNA-binding protein with multiple spliced variants (isoforms) and high levels of expression in a variety of tissues, including neurons. In the latter cells, it is localized not only to the perikaryon but also to dendrites and dendritic spines. FMRP belongs to a family of proteins that includes the Fragile X Related Proteins or FXRPs. FXRPs share high homology in their functional domains with FMRP, and also associate with mRNA and components of the protein synthesis apparatus. However, FXRPs do not have the same temporo-spatial pattern of distribution (and other properties) of FMRP. Immunochemical assays have confirmed that a functionally uncompensated FMRP deficit is the essence of the FraX molecular phenotype. Here, we report our preliminary study on FXRPs levels in leukocytes from FraX males. By immunoblotting, we found that a marked reduction in FMRP levels is associated with a modest increase in FXR1P and no changes in FXR2P levels. The consequences of this reduced FMRP expression on protein synthesis, in other words, the identification of FMRP targets, can be studied by different molecular approaches including protein interaction and proteomics methods. By two-dimensional gel electrophoresis, we showed that in FraX leukocytes there is a defect in acetylation that involves prominently the regulatory protein annexin-1. Extension of current studies of the molecular phenotype to more brain-relevant tissue samples, a wider range of proteomics-based methods, and correlative analyses of FMRP homologues and FMRP targets with multiple behavioral measures, will greatly expand our understanding of FraX pathogenesis and it will help to develop and monitor new therapeutic strategies. Microsc. Res. Tech. 57:135,144, 2002. © 2002 Wiley-Liss, Inc. [source] Molecular characterization of tumour heterogeneity and malignant mesothelioma cell differentiation by gene profilingTHE JOURNAL OF PATHOLOGY, Issue 1 2005Xiaojuan Sun Abstract Malignant mesothelioma is an aggressive tumour, characterized by a variable differentiation pattern and poor prognosis. At present, the clinical outcome in patients with malignant mesothelioma is mainly predicted by the morphological phenotype of the tumour. However, this conventional clinicopathological parameter is of limited value, partly because of the biological heterogeneity of this tumour and poor understanding of the regulatory mechanisms underlying the various patterns of growth. To elucidate the intrinsic molecular programmes that determine tumour differentiation, oligonucleotide arrays were used in an in vitro model of mesothelioma differentiation. The analysis of 2059 genes detected 102 genes that were significantly deregulated. Clustering of these genes into functional categories showed distinctive patterns for the two phenotypes, namely epithelioid and sarcomatoid. The molecular fingerprint of the sarcomatoid tumour component indicates overrepresentation of growth factor receptors and growth factor binding proteins, whereas epithelioid mesothelioma cells express other tumour-promoting factors involved in differentiation, metabolism, and regulation of apoptosis. These differences in the molecular phenotype may give a better basis for diagnosis and for designing novel therapies. Copyright © 2005 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. [source] The Molecular Phenotype of Kidney TransplantsAMERICAN JOURNAL OF TRANSPLANTATION, Issue 10 2010P. F. Halloran Microarray studies of kidney transplant biopsies provide an opportunity to define the molecular phenotype. To facilitate this process, we used experimental systems to annotate transcripts as members of pathogenesis-based transcript sets (PBTs) representing biological processes in injured or diseased tissue. Applying this annotation to microarray results revealed that changes in single molecules and PBTs reflected a large-scale coordinate disturbance, stereotyped across various diseases and injuries, without absolute specificity of individual molecules or PBTs for rejection. Nevertheless, expression of molecules and PBTs was quantitatively specific: IFNG effects for rejection; T cell and macrophage transcripts for T cell-mediated rejection; endothelial and NK transcripts for antibody-mediated rejection. Various diseases and injuries induced the same injury,repair response, undetectable by histopathology, involving epithelium, stroma and endothelium, with increased expression of developmental, cell cycle and apoptosis genes and decreased expression of differentiated epithelial features. Transcripts reflecting this injury,repair response were the best correlates of functional disturbance and risk of future graft loss. Late biopsies with atrophy-fibrosis, reflecting their cumulative burden of injury, displayed more transcripts for B cells, plasma cells and mast cells. Thus the molecular phenotype is best described in terms of three elements: specific diseases, including rejection; the injury,repair response and the cumulative burden of injury. [source] The Molecular Phenotype of Heart Transplant Biopsies: Relationship to Histopathological and Clinical VariablesAMERICAN JOURNAL OF TRANSPLANTATION, Issue 9 2010M. Mengel Histopathology of endomyocardial biopsies (EMB) is the standard rejection surveillance for heart transplants. However, ISHLT consensus criteria for interpreting biopsies are arbitrarily defined. Gene expression offers an independent re-evaluation of existing diagnostic systems. We performed histologic and microarray analysis on 105 EMB from 45 heart allograft recipients. Histologic lesions, diagnosis and transcripts were compared to one another, time posttransplantation, indication for biopsy and left ventricular ejection fraction (LVEF). Histologic lesions presented in two groups: myocyte,interstitial and microcirculation lesions. Expression of transcript sets reflecting T cell and macrophage infiltration, and ,-interferon effects correlated strongly with each other and with transcripts indicating tissue/myocardium injury. This molecular phenotype correlated with Quilty (p < 0.005), microcirculation lesions (p < 0.05) and decreased LVEF (p < 0.007), but not with the histologic diagnosis of rejection. In multivariate analysis, LVEF was associated (p < 0.03) with ,-interferon inducible transcripts, time posttransplantation, ischemic injury and clinically indicated biopsies, but not the diagnosis of rejection. The results indicate that (a) the current ISHLT system for diagnosing rejection does not reflect the molecular phenotype in EMB and lacks clinical relevance; (b) the interpretation of Quilty lesions has to be revisited; (c) the assessment of molecules in heart biopsy can guide improvements of current diagnostics. [source] Diagnosing Rejection in Renal Transplants: A Comparison of Molecular- and Histopathology-Based ApproachesAMERICAN JOURNAL OF TRANSPLANTATION, Issue 8 2009J. Reeve The transcriptome has considerable potential for improving biopsy diagnoses. However, to realize this potential the relationship between the molecular phenotype of disease and histopathology must be established. We assessed 186 consecutive clinically indicated kidney transplant biopsies using microarrays, and built a classifier to distinguish rejection from nonrejection using predictive analysis of microarrays (PAM). Most genes selected by PAM were interferon-,,inducible or cytotoxic T-cell associated, for example, CXCL9, CXCL11, GBP1 and INDO. We then compared the PAM diagnoses to those from histopathology, which are based on the Banff diagnostic criteria. Disagreement occurred in approximately 20% of diagnoses, principally because of idiosyncratic limitations in the histopathology scoring system. The problematic diagnosis of ,borderline rejection' was resolved by PAM into two distinct classes, rejection and nonrejection. The diagnostic discrepancies between Banff and PAM in these cases were largely due to the Banff system's requirement for a tubulitis threshold in defining rejection. By examining the discrepancies between gene expression and histopathology, we provide external validation of the main features of the histopathology diagnostic criteria (the Banff consensus system), recommend improvements and outline a pathway for introducing molecular measurements. [source] Scoring Total Inflammation Is Superior to the Current Banff Inflammation Score in Predicting Outcome and the Degree of Molecular Disturbance in Renal AllograftsAMERICAN JOURNAL OF TRANSPLANTATION, Issue 8 2009M. Mengel Emerging molecular analysis can be used as an objective and independent assessment of histopathological scoring systems. We compared the existing Banff i-score to the total inflammation (total i-) score for assessing the molecular phenotype in 129 renal allograft biopsies for cause. The total i-score showed stronger correlations with microarray-based gene sets representing major biological processes during allograft rejection. Receiver operating characteristic curves showed that total-i was superior (areas under the curves 0.85 vs. 0.73 for Banff i-score, p = 0.012) at assessing an abnormal cytotoxic T-cell burden, because it identified molecular disturbances in biopsies with advanced scarring. The total-i score was also a better predictor of graft survival than the Banff i-score and essentially all current diagnostic Banff categories. The exception was antibody-mediated rejection which is able to predict graft loss with greater specificity (96%) but at low sensitivity (38%) due to the fact that it only applies to cases with this diagnosis. The total i-score is able to achieve moderate sensitivities (60,80%) with losses in specificity (60,80%) across the whole population. Thus, the total i-score is superior to the current Banff i-score and most diagnostic Banff categories in predicting outcome and assessing the molecular phenotype of renal allografts. [source] Remarkable heterogeneity displayed by oval cells in rat and mouse models of stem cell,mediated liver regeneration,HEPATOLOGY, Issue 6 2007Peter Jelnes The experimental protocols used in the investigation of stem cell,mediated liver regeneration in rodents are characterized by activation of the hepatic stem cell compartment in the canals of Hering followed by transit amplification of oval cells and their subsequent differentiation along hepatic lineages. Although the protocols are numerous and often used interchangeably across species, a thorough comparative phenotypic analysis of oval cells in rats and mice using well-established and generally acknowledged molecular markers has not been provided. In the present study, we evaluated and compared the molecular phenotypes of oval cells in several of the most commonly used protocols of stem cell,mediated liver regeneration,namely, treatment with 2-acetylaminofluorene and partial (70%) hepatectomy (AAF/PHx); a choline-deficient, ethionine-supplemented (CDE) diet; a 3,5-diethoxycarbonyl-1,4-dihydro-collidin (DDC) diet; and N -acetyl-paraaminophen (APAP). Reproducibly, oval cells showing reactivity for cytokeratins (CKs), muscle pyruvate kinase (MPK), the adenosine triphosphate,binding cassette transporter ABCG2/BCRP1 (ABCG2), alpha-fetoprotein (AFP), and delta-like protein 1/preadipocyte factor 1 (Dlk/Pref-1) were induced in rat liver treated according to the AAF/PHx and CDE but not the DDC protocol. In mouse liver, the CDE, DDC, and APAP protocols all induced CKs and ABCG2-positive oval cells. However, AFP and Dlk/Pref-1 expression was rarely detected in oval cells. Conclusion: Our results delineate remarkable phenotypic discrepancies exhibited by oval cells in stem cell,mediated liver regeneration between rats and mice and underline the importance of careful extrapolation between individual species. (HEPATOLOGY 2007;45:1462,1470.) [source] Molecular Variability of Mycosphaerella graminicola as Detected by RAPD MarkersJOURNAL OF PHYTOPATHOLOGY, Issue 10 2004M. Razavi Abstract A total of 90 isolates of Mycosphaerella graminicola, the cause of septoria tritici leaf blotch of wheat, were tested for DNA polymorphism using 15 decamer random primers. There was a high level of genetic variability among isolates. In 131 random amplified polymorphic DNA (RAPD) fragments, which were produced, 96% were polymorphic. Based on multilocus analysis, 40 different molecular phenotypes were detected. These molecular phenotypes were randomly distributed among sampling sites, suggesting that no clonal structure existed in the population. Cluster analysis showed that the maximum similarity value among isolates was approximately 81% and no identical isolates were detected, indicating that every isolate was a unique genotype. The high degree of DNA polymorphism, the large number of different molecular phenotypes, their random distribution and the results of the cluster analysis all suggested that sexual reproduction has a major role in the genetic structure of M. graminicola in western Canada. The presence of sexual reproduction provides the opportunity for development of new virulent genotypes in the population and suggests that the pathogen may adapt rapidly to any race-specific sources of resistance. Therefore, when breeding for resistance to M. graminicola, emphasis should be placed on use of non-race-specific resistance. [source] Genetic and epigenetic classifications define clinical phenotypes and determine patient outcomes in colorectal cancer,BRITISH JOURNAL OF SURGERY (NOW INCLUDES EUROPEAN JOURNAL OF SURGERY), Issue 10 2009J. A. Sanchez Background: A molecular classification of colorectal cancer has been proposed based on microsatellite instability (MSI), CpG island methylator phenotype (CIMP), and mutations in the KRAS and BRAF oncogenes. This study examined the prevalence of these molecular classes, and differences in clinical presentation and outcome. Methods: Demographics, tumour characteristics and survival were recorded for 391 subjects with colorectal cancer. Tumour DNA was analysed for MSI (high (MSI-H) or microsatellite stable (MSS)), CIMP (high (CIMP-H) or no (CIMP-neg)) and BRAF and KRAS mutations. Clinical differences between four phenotypes were examined. Results: Most tumours were MSS/CIMP-neg (69·8 per cent), with a nearly equal distribution of MSI-H/CIMP-H, MSI-H/CIMP-neg and MSS/CIMP-H types. MSS/CIMP-neg tumours were less likely to be poorly differentiated (P = 0·009). CIMP-H tumours were more common in older patients (P < 0·001). MSI-H/CIMP-H tumours had a high frequency of BRAF mutation and a low rate of KRAS mutation; the opposite was true for MSS/CIMP-neg tumours (P < 0·001). The four molecular phenotypes tended towards divergent survival (P = 0·067 for stages 1,III). MSI-H cancers were associated with better disease-free survival (hazard ratio 2·00 (95 per cent confidence interval 1·03 to 3·91); P = 0·040). Conclusion: Colorectal cancers are molecularly and clinically heterogeneous. These different molecular phenotypes may reflect variable prognosis. Copyright © 2009 British Journal of Surgery Society Ltd. Published by John Wiley & Sons, Ltd. [source] |