Molecular Perspectives (molecular + perspective)

Distribution by Scientific Domains


Selected Abstracts


Molecular Perspectives on Protein-Protein Interactions

JOURNAL OF MOLECULAR RECOGNITION, Issue 5 2010
Article first published online: 4 AUG 2010
No abstract is available for this article. [source]


Density functional theory for chemical engineering: From capillarity to soft materials

AICHE JOURNAL, Issue 3 2006
Jianzhong Wu
Abstract Understanding the microscopic structure and macroscopic properties of condensed matter from a molecular perspective is important for both traditional and modern chemical engineering. A cornerstone of such understanding is provided by statistical mechanics, which bridges the gap between molecular events and the structural and physiochemical properties of macro- and mesoscopic systems. With ever-increasing computer power, molecular simulations and ab initio quantum mechanics are promising to provide a nearly exact route to accomplishing the full potential of statistical mechanics. However, in light of their versatility for solving problems involving multiple length and timescales that are yet unreachable by direct simulations, phenomenological and semiempirical methods remain relevant for chemical engineering applications in the foreseeable future. Classical density functional theory offers a compromise: on the one hand, it is able to retain the theoretical rigor of statistical mechanics and, on the other hand, similar to a phenomenological method, it demands only modest computational cost for modeling the properties of uniform and inhomogeneous systems. Recent advances are summarized of classical density functional theory with emphasis on applications to quantitative modeling of the phase and interfacial behavior of condensed fluids and soft materials, including colloids, polymer solutions, nanocomposites, liquid crystals, and biological systems. Attention is also given to some potential applications of density functional theory to material fabrications and biomolecular engineering. © 2005 American Institute of Chemical Engineers AIChE J, 2006 [source]


Buried alive: How osteoblasts become osteocytes

DEVELOPMENTAL DYNAMICS, Issue 1 2006
Tamara A. Franz-Odendaal
Abstract During osteogenesis, osteoblasts lay down osteoid and transform into osteocytes embedded in mineralized bone matrix. Despite the fact that osteocytes are the most abundant cellular component of bone, little is known about the process of osteoblast-to-osteocyte transformation. What is known is that osteoblasts undergo a number of changes during this transformation, yet retain their connections to preosteoblasts and osteocytes. This review explores the osteoblast-to-osteocyte transformation during intramembranous ossification from both morphological and molecular perspectives. We investigate how these data support five schemes that describe how an osteoblast could become entrapped in the bone matrix (in mammals) and suggest one of the five scenarios that best fits as a model. Those osteoblasts on the bone surface that are destined for burial and destined to become osteocytes slow down matrix production compared to neighbouring osteoblasts, which continue to produce bone matrix. That is, cells that continue to produce matrix actively bury cells producing less or no new bone matrix (passive burial). We summarize which morphological and molecular changes could be used as characters (or markers) to follow the transformation process. Developmental Dynamics 235:176,190, 2006. © 2005 Wiley-Liss, Inc. [source]


Periarticular ligament changes following ACL/MCL transection in an ovine stifle joint model of osteoarthritis

JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 8 2007
Yusei Funakoshi
Abstract Anterior cruciate ligament (ACL) injuries often lead to significant functional impairment, and are associated with increased risk for induction of degenerative joint disease. However, few studies have described the effect of ligament transection on the remaining intact knee ligaments. This study sought to determine specifically what impact combined ACL/medial collateral ligament (MCL) transection had on the remaining intact knee ligaments, particularly from the histological, biochemical, and molecular perspectives. Twenty weeks post-ACL/MCL transection, the cut ends of sheep MCLs were bridged by scar, while the posterior cruciate ligaments (PCLs) and lateral collateral ligaments (LCLs) seemed gross morphologically normal. Water content and cell density increased significantly in the MCL scars and the intact PCLs but were unchanged in the LCLs. Collagen fibril diameter distribution was significantly altered in both MCL scar tissue and uninjured PCLs from transected joints. MMP-13 mRNA levels in MCL scars and PCLs from ligament transected joints were increased, while TIMP-1 mRNA levels were significantly decreased in the PCLs only. This study has shown that some intact ligaments in injured joints are impacted by the injury. The joint appears to behave like an integrated organ system, with injury to one component affecting the other components as the "organ" attempts to adapt to the loss of integrity. © 2007 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 25:997,1006, 2007 [source]