Molecular Pathogenesis (molecular + pathogenesis)

Distribution by Scientific Domains
Distribution within Medical Sciences


Selected Abstracts


Molecular pathogenesis of head and neck cancers

JOURNAL OF SURGICAL ONCOLOGY, Issue 8 2008
Bhuvanesh Singh MD, FACSArticle first published online: 20 MAY 200
Abstract Head and neck cancers represent a progressive genetic malady, with genetic aberrations accumulating in response to carcinogen exposure. Although individual genomic aberrations develop at specific time points in the progression axis, the precise role of these abnormalities in tumor progression and cancer behavior remain to be elucidated. This article will give an overview of the current knowledge on the molecular basis for the development of head and neck cancers. J. Surg. Oncol. 2008;97:634,639. © 2008 Wiley-Liss, Inc. [source]


Mucosa-associated lymphoid tissue lymphoma: Molecular pathogenesis and clinicopathological significance

PATHOLOGY INTERNATIONAL, Issue 8 2007
Hiroshi Inagaki
Mucosa-associated lymphoid tissue (MALT) lymphoma is a low-grade tumor closely associated with chronic inflammation such as that of Helicobacter pylori gastritis, Sjogren's syndrome, and Hashimoto's thyroiditis. Tumor regression by H. pylori eradication alone is well known in gastric MALT lymphoma, but some tumors occur in the absence of pre-existing chronic inflammation. The understanding of MALT lymphoma biology has significantly improved, and recurrent cytogenetic alterations have been detected. These include the trisomies 3 and 18, and the translocations t(11;18)(q21;q21), t(1;14)(p22;q32), t(14;18)(q32;q21), and t(3;14)(p14.1;q32). At least some of these alterations result in the constitutive activation of the nuclear factor (NF)-,B pathway, and may exert anti-apoptotic action. Apoptosis inhibitor 2,MALT lymphoma-associated translocation 1 (API12 - MALT1) fusion, resulting from t(11;18)(q21;q21), is specific to, and is the most common in, MALT lymphomas, and its clinicopathological significance has been studied extensively. The focus of the present review is on the recent progress made in elucidating MALT lymphomagenesis and its clinicopathological impact, especially in terms of the effect of API2-MALT1 fusion on this unique tumor. [source]


Molecular pathogenesis and prognostic factors in endometrial carcinoma

APMIS, Issue 10 2002
HELGA B. SALVESEN
Endometrial carcinoma is today among the most common gynecologic malignancies in industrialized countries. In order to improve the treatment and follow-up of these patients, various prognostic factors have been extensively studied. Patient age, stage of disease, histologic type and histologic grade have been shown to influence survival significantly, and the prognostic impact of these traditional clinicopathologic variables is well established. In addition, parity, hormone receptor concentration in the tumor, DNA ploidy and morphometric nuclear grade have all been found to influence prognosis. Information about DNA ploidy has especially been used in the clinical situation to determine individualized treatment. The prognostic significance of markers for tumor cell proliferation, cell cycle regulation (p53, p21 and p16) and angiogenesis is discussed as well as the molecular basis of endometrial carcinoma. In conclusion, several prognostic markers have been identified. It is likely that the information derived from these tumor biomarkers will reduce the need for extensive surgical staging and adjuvant treatment in endometrial carcinoma. [source]


Cytoprotection of beta cells: rational gene transfer strategies

DIABETES/METABOLISM: RESEARCH AND REVIEWS, Issue 3 2006
Cillian McCabe
Abstract Gene transfer to pancreatic islets may prove useful in preventing islet cell destruction and prolonging islet graft survival after transplantation in patients with type 1 diabetes mellitus (T1DM). Potentially, a host of therapeutically relevant transgenes may be incorporated into an appropriate gene delivery vehicle and used for islet modification. An increasing understanding of the molecular pathogenesis of immune-mediated beta cell death has served to highlight molecules which have become suitable candidates for promoting islet cell survival in the face of oxidative stress. This review aims to give an overview of some conventional gene transfer strategies aimed at promoting islet cell survival in the face of cytokine onslaught. These strategies target three aspects of islet cell physiology: redox status and antioxidant defence, anti-apoptotic gene expression and mediators of cytokine signal transduction pathways. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Fluorescence in situ hybridization (FISH) analysis of the interactions between honeybee larvae and Paenibacillus larvae, the causative agent of American foulbrood of honeybees (Apis mellifera)

ENVIRONMENTAL MICROBIOLOGY, Issue 6 2008
Dominique Yue
Summary American foulbrood (AFB) is a bacterial disease of honeybee larvae caused by the spore-forming bacterium Paenibacillus larvae. Although AFB and its aetiological agent are described now for more than a century, the general and molecular pathogenesis of this notifiable disease is poorly understood. We used fluorescence in situ hybridization (FISH) performed with P. larvae -specific, 16S rRNA-targeted oligonucleotide probes to analyse the early steps in the pathogenesis of American foulbrood. The following chain of events could be demonstrated: (i) the spores germinate in the midgut lumen, (ii) the vegetative bacteria massively proliferate within the midgut before, and (iii) they start to locally breach the epithelium and invade the haemocoel. The paracellular route was shown to be the main mechanism for invasion contrasting earlier hypotheses of phagocytosis of P. larvae. Invasion coincided with the death of the host implicating that the penetration of the midgut epithelium is a critical step determining the time of death. [source]


Proteomic Identification of the Involvement of the Mitochondrial Rieske Protein in Epilepsy

EPILEPSIA, Issue 3 2005
Heike Junker
Summary:,Purpose: Kindled seizures are widely used to model epileptogenesis, but the molecular mechanisms underlying the attainment of kindling status are largely unknown. Recently we showed that achievement of kindling status in the Sprague,Dawley rat is associated with a critical developmental interval of 25 ± 1 days; the identification of this long, well-defined developmental interval for inducing kindling status makes possible a dissection of the cellular and genetic events underlying this phenomenon and its relation to normal and pathologic brain function. Methods: By using proteomics on cerebral tissue from our new rat kindling model, we undertook a global analysis of protein expression in kindled animals. Some of the identified proteins were further investigated by using immunohistochemistry. Results: We report the identification of a modified variant of the Rieske iron-sulfur protein, a component of the mitochondrial cytochrome bc1 complex, whose isoelectric point is shifted toward more alkaline values in the hippocampus of kindled rats. By immunohistochemistry, the Rieske protein is well expressed in the hippocampus, except in the CA1 subfield, an area of selective vulnerability to seizures in humans and animal models. We also noted an asymmetric, selective expression of the Rieske protein in the subgranular neurons of the dorsal dentate gyrus, a region implicated in neurogenesis. Conclusions: These results indicate that the Rieske protein may play a role in the response of neurons to seizure activity and could give important new insights into the molecular pathogenesis of epilepsy. [source]


Quantitative microsatellite analysis to delineate the commonly deleted region 1p22.3 in mantle cell lymphomas

GENES, CHROMOSOMES AND CANCER, Issue 10 2006
Asha Balakrishnan
The molecular pathogenesis of mantle cell lymphomas (MCL), a subset of B-cell non-Hodgkin's lymphomas with a poor prognosis, is still poorly understood. In addition to the characteristic primary genetic alteration t(11;14)(q13;q32), several further genetic changes are present in most cases. One of the most frequent genomic imbalances is the deletion of 1p22.1,p31.1 observed in nearly one-third of MCL cases. This might indicate the presence of tumor suppressor gene(s) in this critical region of deletion. Quantitative microsatellite analysis (QuMA) is a real-time PCR-based method to detect DNA copy number changes. Since QuMA has the resolving power to detect subtle genomic alterations, including homozygous deletions, this may help to identify candidate tumor suppressor genes from deleted regions. To gain more insight into the molecular pathogenesis of MCL, QuMA was performed on genomic DNA from 57 MCL cases. Eight microsatellite loci mapping to the chromosomal region 1p22.3 were analyzed. Losses were observed in 51 of the 57 (,89.5%) samples. Two cases showed a homozygous deletion at the locus containing the gene SH3GLB1, which plays a key role in Bax-mediated apoptosis. Two hotspots with copy number losses were detected at chromosomal localizations 85.4 and 86.6 Mb encompassing BCL10 and CLCA2. Both the genes seem to be attractive candidates to study tumor suppressor function in MCL. This article contains Supplementary material available at http://www.interscience.wiley.com/jpages/1045,2257/suppmat. © 2006 Wiley-Liss, Inc. [source]


Basaloid in contrast to nonbasaloid head and neck squamous cell carcinomas display aberrations especially in cell cycle control genes

HEAD & NECK: JOURNAL FOR THE SCIENCES & SPECIALTIES OF THE HEAD AND NECK, Issue 11 2003
Micaela Poetsch PhD
Abstract Background. At present, the differences between head and neck basaloid squamous cell carcinoma (BSCC) and nonbasaloid squamous cell carcinoma (SCC) are mostly on the basis of histologic and immunohistologic findings. Methods. In this study, we investigated 8 BSCCs and 59 SCCs for loss of heterozygosity (LOH) at chromosomes 5q, 9p, 9q, 10q, 11q, 13p, 17p, and 18q. In addition, we analyzed p16, PTEN, and CCND1 (cyclin D1) and investigated the HPV status. Immunohistochemically, the expression of MIB-1, p16, p53, and cyclin D1 was determined. Results. Aberrations in the BSCCs were especially frequent at 9p and in the CCND1 gene. In contrast, alterations at 10q occurred almost exclusively in conventional SCCs. Obvious differences could be determined concerning the HPV status: HPV-DNA was detected in all BSCCs but only in 17% of conventional SCCs. Conclusions. Although the number of investigated BSCCs is rather low and did not allow statistical conclusions, our results focus on certain differences between the molecular pathogenesis of BSCCs and SCCs. © 2003 Wiley Periodicals, Inc. Head and Neck 25: 000,000, 2003 [source]


How would I manage a case of essential thrombocythaemia presenting with an ischaemic toe

HEMATOLOGICAL ONCOLOGY, Issue 1 2008
DP McLornan
Abstract Essential thrombocythaemia (ET) is an acquired myeloproliferative disorder. The phenotypic and biological heterogeneity of ET can make management of individual cases problematic, especially in the era of changing ideas on the molecular pathogenesis of this disease process. This case discussion will explore the evidence base and rationale that guides treatment of a 46-year-old individual with ET presenting with an ischaemic episode. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Sorafenib: Where do we go from here?,

HEPATOLOGY, Issue 1 2010
Abby B. Siegel
The approval of sorafenib as the first effective drug for the treatment of hepatocellular carcinoma (HCC) represents a milestone in the treatment of this disease. A better understanding of HCC pathogenesis has led to the development of several novel targeted treatments. HCC is treated in a uniquely multidisciplinary way requiring surgeons, hepatologists, interventional radiologists, and oncologists. This review describes the molecular pathogenesis of HCC, explores current and future treatments based on these pathways, and describes how these new therapies may augment existing approaches to HCC treatment.(HHEPATOLOGY 2010;) [source]


Epidemiology, risk factors, and pathogenesis of cholangiocarcinoma

HPB, Issue 2 2008
S. A. KHAN
Abstract Cholangiocarcinoma (CCA) is a fatal cancer of the biliary epithelium, arising either within the liver (intrahepatic, ICC) or in the extrahepatic bile ducts (extrahepatic ECC). Globally, CCA is the second most common primary hepatic malignancy. Several recent epidemiological studies have shown that the incidence and mortality rates of ICC are increasing. This review of the literature on the international epidemiological rates of CCA, both intra- and extrahepatic, explores possible explanations for the trends found. The possible role of epidemiological artifact in the findings is discussed and the known risk factors for CCA are summarized. These include primary sclerosing cholangitis, liver fluke infestation, congenital fibropolycystic liver, bile duct adenomas, and biliary papillomatosis, hepatolithiasis, chemical carcinogens such as nitrosamines, Thorotrast, chronic viral hepatitis, cirrhosis, chronic non-alcoholic liver disease and obesity. Potential pathways involved in the molecular pathogenesis of CCA are also summarized. [source]


Mutation analysis in mitochondrial fatty acid oxidation defects: Exemplified by acyl-CoA dehydrogenase deficiencies, with special focus on genotype,phenotype relationship

HUMAN MUTATION, Issue 3 2001
Niels Gregersen
Abstract Mutation analysis of metabolic disorders, such as the fatty acid oxidation defects, offers an additional, and often superior, tool for specific diagnosis compared to traditional enzymatic assays. With the advancement of the structural part of the Human Genome Project and the creation of mutation databases, procedures for convenient and reliable genetic analyses are being developed. The most straightforward application of mutation analysis is to specific diagnoses in suspected patients, particularly in the context of family studies and for prenatal/preimplantation analysis. In addition, from these practical uses emerges the possibility to study genotype,phenotype relationships and investigate the molecular pathogenesis resulting from specific mutations or groups of mutations. In the present review we summarize current knowledge regarding genotype,phenotype relationships in three disorders of mitochondrial fatty acid oxidation: very-long chain acyl-CoA dehydrogenase (VLCAD, also ACADVL), medium-chain acyl-CoA dehydrogenase (MCAD, also ACADM), and short-chain acyl-CoA dehydrogenase (SCAD, also ACADS) deficiencies. On the basis of this knowledge we discuss current understanding of the structural implications of mutation type, as well as the modulating effect of the mitochondrial protein quality control systems, composed of molecular chaperones and intracellular proteases. We propose that the unraveling of the genetic and cellular determinants of the modulating effects of protein quality control systems may help to assess the balance between genetic and environmental factors in the clinical expression of a given mutation. The realization that the effect of the monogene, such as disease-causing mutations in the VLCAD, MCAD, and SCAD genes, may be modified by variations in other genes presages the need for profile analyses of additional genetic variations. The rapid development of mutation detection systems, such as the chip technologies, makes such profile analyses feasible. However, it remains to be seen to what extent mutation analysis will be used for diagnosis of fatty acid oxidation defects and other metabolic disorders. Hum Mutat 18:169,189, 2001. © 2001 Wiley-Liss, Inc. [source]


HPV related VIN: Highly proliferative and diminished responsiveness to extracellular signals

INTERNATIONAL JOURNAL OF CANCER, Issue 4 2007
Lindy A.M. Santegoets
Abstract Vulvar intraepithelial neoplasia (VIN) is a premalignant disorder caused by human papillomaviruses. Basic knowledge about the molecular pathogenesis of VIN is sparse. Therefore, we have analyzed the gene expression profile of 9 VIN samples in comparison to 10 control samples by using genome wide Affymetrix Human U133A plus2 GeneChips. Results were validated by quantitative real-time RT-PCR analysis and immunostaining of a few representative genes (TACSTD1, CCNE2, AR and ESR1). Significance analysis of microarrays (SAM) showed that 1,497 genes were differentially expressed in VIN compared to controls. By analyzing the biological processes affected by the observed differences, we found that VIN appears to be a highly proliferative disease; many cyclins (CCNA, CCNB and CCNE) and almost all prereplication complex proteins are upregulated. Thereby, VIN does not seem to depend for its proliferation on paracrine or endocrine signals. Many receptors (for example ESR1 and AR) and ligands are downregulated. Furthermore, although VIN is not an invasive disease, the inhibition of expression of a marked number of cell,cell adhesion molecules seems to indicate development towards invasion. Upon reviewing apoptosis and angiogenesis, it was observed that these processes have not become significantly disregulated in VIN. In conclusion: although VIN is still a premalignant disease, it already displays several hallmarks of cancer. © 2007 Wiley-Liss, Inc. [source]


The analysis of JAK2 and MPL mutations and JAK2 single nucleotide polymorphisms in MPN patients by MassARRAY assay

INTERNATIONAL JOURNAL OF LABORATORY HEMATOLOGY, Issue 4 2010
S.-J. ZHANG
Summary Recent studies have shown that JAK2 V617F, MPL W515L/K and JAK2 exon 12 mutations underlie the major molecular pathogenesis of myeloproliferative disorders (MPN). Allele-Specific Polymerase Chain Reaction (AS-PCR), direct sequencing and MassARRAY assay were used to ascertain the real prevalence of these mutations and the influence of genetic susceptibility in Chinese MPN patients. The positive rate of JAK2 V617F in polycythaemia vera (PV), essential thrombocythaemia (ET) and primary myelofibrosis (PMF) was 82.0%, 36.6% and 51.1% respectively. One ET patient and two PMF patients harboured the MPL W515L mutation and three PV patients harboured JAK2 exon 12 mutations. All of these patients were confirmed as JAK2 V617F negative. Clinical data demonstrated that PV patients with JAK2 exon 12 mutations were younger, had higher haemoglobin levels and white blood cell counts than PV patients with JAK2 V617F. In addition, through analysis of 4 polymorphic loci of JAK2 gene, no significant difference of distribution frequency was found among PV, ET and PMF patients. Distribution frequency of haplotype also was not significantly different among PV, ET and PMF patients. We conclude that JAK2 V617F is a major molecular pathogenesis in Chinese MPN patients. MPL W515L mutation and JAK2 exon 12 mutations can also be found in JAK2 V617F negative MPN patients. [source]


Waveform analysis of clotting test optical profiles in the diagnosis and management of disseminated intravascular coagulation (DIC)

INTERNATIONAL JOURNAL OF LABORATORY HEMATOLOGY, Issue 6 2002
C. H. Toh
Summary Transmittance waveform charts the changes in light transmittance on standard coagulation assays, such as the prothrombin time (PT) and activated partial thromboplastin time (APTT). Analysis and characterization of these data on photo-optical coagulation analysers provides additional qualitative and quantitative information to that obtained using the clotting time alone. The most thoroughly evaluated clinical application is that of the biphasic APTT waveform with disseminated intravascular coagulation (DIC). The degree of waveform abnormality correlates directly with the severity of haemostatic dysfunction and allows for both the prediction and monitoring from non-overt to overt DIC. As its performance is simple and rapid, this provides the means for targeting therapeutic intervention to an earlier stage of DIC. The recent identification that the mechanism underlying the biphasic waveform is a complex that exists in vivo between C reactive protein with very low density lipoprotein, provides potentially important insights into the molecular pathogenesis of DIC. Thus, in addition to the immediate clinical utility in diagnostic practice, it has important applications as a research tool. Preliminary experience in the application of this technology to the diagnosis and management of the haemophilias and the lupus anticoagulant syndrome has also provided evidence of the power and utility of waveform analysis in essentially simple clotting assays. [source]


Immunoreactivity of the phosphorylated axonal neurofilament H subunit (pNF-H) in blood of ALS model rodents and ALS patients: evaluation of blood pNF-H as a potential ALS biomarker

JOURNAL OF NEUROCHEMISTRY, Issue 5 2009
Kevin Boylan
Abstract Levels of neurofilament subunits, potential biomarkers of motor axon breakdown, are increased in amyotrophic lateral sclerosis (ALS) patient's CSF but data on blood are not available. We measured blood levels of the phosphorylated axonal form of neurofilament H (pNF-H) by ELISA in transgenic rodent models of superoxide dismutase 1 (SOD1) ALS, and in 20 ALS patients and 20 similar aged controls monthly for 4 months. All symptomatic rodent ALS models showed robust levels of blood pNF-H, while control rodents or mice transgenic for unmutated SOD1 showed no detectable blood pNF-H. Average pNF-H levels in the G93A SOD1 mouse progressively increased from day 74 through death (day ,130). Median blood pNF-H level in ALS patients was 2.8-fold higher than controls (p < 0.001). Median ALSFRS-R declined a median of 0.8 pt/month (p < 0.001); higher baseline pNF-H level appeared to be associated with faster ALSFRS-R decline over 4 months (p = 0.087). The median rate of decline in ALSFRS-R was 1.9 pt/month in patients with baseline pNF-H levels above the median pNF-H value of 0.53 ng/mL; ALSFRS-R declined at a median of 0.6 pt/month in patients below this level. The pNF-H levels were relatively stable month to month in individual patients, raising questions regarding the molecular pathogenesis of ALS. Baseline control human pNF-H levels were higher in men than women and increased minimally over time. These data suggest that blood pNF-H can be used to monitor axonal degeneration in ALS model rodents and support further study of this protein as a potential biomarker of disease prognosis in ALS patients. [source]


Human spastin has multiple microtubule-related functions

JOURNAL OF NEUROCHEMISTRY, Issue 5 2005
Sara Salinas
Abstract Hereditary spastic paraplegias (HSPs) are neurodegenerative diseases caused by mutations in more than 20 genes, which lead to progressive spasticity and weakness of the lower limbs. The most frequently mutated gene causing autosomal dominant HSP is SPG4, which encodes spastin, a protein that belongs to the family of ATPases associated with various cellular activities (AAAs). A number of studies have suggested that spastin regulates microtubule dynamics. We have studied the ATPase activity of recombinant human spastin and examined the effect of taxol-stabilized microtubules on this activity. We used spastin translated from the second ATG and provide evidence that this is the physiologically relevant form. We showed that microtubules enhance the ATPase activity of the protein, a property also described for katanin, an AAA of the same spastin subgroup. Furthermore, we demonstrated that human spastin has a microtubule-destabilizing activity and can bundle microtubules in vitro, providing new insights into the molecular pathogenesis of HSP. [source]


Expression profiling reveals alternative macrophage activation and impaired osteogenesis in periprosthetic osteolysis

JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 1 2008
Panagiotis Koulouvaris
Abstract Interactions between periprosthetic cells and prosthetic wear debris have been recognized as an important event in the development of osteolysis and aseptic loosening. Although the ability of wear debris to activate pro-inflammatory macrophage signaling has been documented, the full repertoire of macrophage responses to wear particles has not been established. Here, we examined the involvement of alternative macrophage activation and defective osteogenic signaling in osteolysis. Using real-time RT-PCR analysis of periprosthetic soft tissue from osteolysis patients, we detected elevated levels of expression of alternative macrophage activation markers (CHIT1, CCL18), chemokines (IL8, MIP1 ,) and markers of osteoclast precursor cell differentiation and multinucleation (Cathepsin K, TRAP, DC-STAMP) relative to osteoarthritis controls. The presence of cathepsin K positive multinuclear cells was confirmed by immunohistochemistry. Reduced expression levels of the osteogenic signaling components BMP4 and FGF18 were detected. Expression levels of TNF-,, IL-6, and RANKL were unchanged, while the anti-osteoclastogenic cytokine OPG was reduced in osteolysis patients, resulting in elevated RANKL:OPG ratios. In vitro studies confirmed the role of particulate debris in alternative macrophage activation and inhibition of osteogenic signaling. Taken together, these results suggest involvement in osteolysis of alternative macrophage activation, accompanied by elevated levels of various chemokines. Increased recruitment and maturation of osteoclast precursors is also observed, as is reduced osteogenesis. These findings provide new insights into the molecular pathogenesis of osteolysis, and identify new potential candidate markers for disease progression and therapeutic targeting. © 2007 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 26:106,116, 2008 [source]


Systematic review: the application of molecular pathogenesis to prevention and treatment of oesophageal adenocarcinoma

ALIMENTARY PHARMACOLOGY & THERAPEUTICS, Issue 11 2007
C. J. PETERS
Summary Background Oesophageal adenocarcinoma is an increasingly common cancer with a poor prognosis. It develops in a stepwise progression from Barrett's metaplasia to dysplasia, and then adenocarcinoma followed by metastasis. Aim To outline the key molecular changes in oesophageal adenocarcinoma and to summarize the chemopreventative and therapeutic strategies proposed. Methods A literature search was performed to identify appropriate research papers in the field. Search terms included: Barrett's (o)esophagus, intestinal metaplasia, (o)esophageal adenocarcinoma, molecular changes, genetic changes, pathogenesis, chemoprevention, therapeutic strategies and treatment. The search was restricted to English language articles. Results A large number of molecular changes have been identified in the progression from Barrett's oesophagus to oesophageal adenocarcinoma although there does not appear to be an obligate order of events. Potential chemoprevention strategies include acid suppression, anti-inflammatory agents and antioxidants. In established adenocarcinoma, targeted treatments under evaluation include receptor tyrosine kinase inhibitors of EGFR and cyclin-dependent kinase inhibitors, which may benefit a subgroup of patients. Conclusions Advances in molecular methodology have led to a greater understanding of the oesophageal adenocarcinoma pathways, which provides opportunities for chemoprevention and therapeutic strategies with a mechanistic basis. More work is required to assess both the safety and efficacy of these new treatments. [source]


Toward the discovery of new biomarkers of hepatocellular carcinoma by proteomics

LIVER INTERNATIONAL, Issue 2 2007
Enrique Santamaría
Abstract Primary liver cancer is the fifth most frequent neoplasm and the third most common cause of cancer-related death, with more than 500 000 new cases diagnosed yearly. The outcome for hepatocellular carcinoma (HCC) patients still remains dismal, partly because of our limited knowledge of its molecular pathogenesis and the difficulty in detecting the disease at its early stages. Therefore, studies aimed at the definition of the mechanisms associated with HCC progression and the identification of new biomarkers leading to early diagnosis and more effective therapeutic interventions are urgently needed. Proteomics is a rapidly expanding discipline that is expected to change the way in which diseases will be diagnosed, treated, and monitored in the near future. In the last few years, HCC has been extensively investigated using different proteomic approaches on HCC cell lines, animal models, and human tumor tissues. In this review, state-of-the-art technology on proteomics is overviewed, and recent advances in liver cancer proteomics and their clinical projections are discussed. [source]


Differential expression of insulin-like growth factor binding protein-5 in pancreatic adenocarcinomas: Identification using DNA microarray

MOLECULAR CARCINOGENESIS, Issue 11 2006
Sarah K. Johnson
Abstract Pancreatic ductal adenocarcinoma (PDAC) is characterized by its aggressiveness and resistance to both radiation and chemotherapeutic treatment. To better understand the molecular pathogenesis of pancreatic cancer, DNA array technology was employed to identify genes differentially expressed in pancreatic tumors when compared to non-malignant pancreatic tissues. RNA isolated from 11 PDACs and 14 non-malignant bulk pancreatic duct specimens was used to probe Affymetrix U95A DNA arrays. Genes that displayed at least a fourfold differential expression were identified and real-time quantitative PCR was used to verify the differential expression of selected upregulated genes. Interrogation of the DNA array revealed that 73 genes were upregulated in PDACs and 77 genes were downregulated. The majority of the 150 genes identified have not been previously reported to be differentially expressed in pancreatic tumors, although a number of the upregulated transcripts have been reported previously. Immunohistochemistry was used to correlate calponin and insulin-like growth factor binding protein-5 (IGFBP-5) RNA levels with protein expression in PDACs and revealed peritumoral calponin staining in the reactive stroma and intense focal staining of islets cells expressing IGFBP-5 at the edge of tumors; thus implicating the interplay of various cell types to promote neoplastic cell growth within pancreatic carcinomas. As a potential modulator of cell proliferation, the overexpression of IGFBP-5 may, therefore, play a significant role in the malignant transformation of normal pancreatic epithelial cells. © 2006 Wiley-Liss, Inc. [source]


Review: Familial Parkinson's disease , genetics, clinical phenotype and neuropathology in relation to the common sporadic form of the disease

NEUROPATHOLOGY & APPLIED NEUROBIOLOGY, Issue 3 2008
Carola Schiesling
The identification of the first gene in familial Parkinson's disease (PD) only 10 years ago was a major step in the understanding of the molecular mechanisms in neurodegeneration. Alpha-synuclein aggregation was not only recognized as a key event in neurodegeneration in patients carrying mutations in this gene, but it turned out to be the most consistent marker to define Lewy body pathology also in non-heritable idiopathic PD (IPD). Subsequent comprehensive pathoanatomical studies of IPD brains led to a novel concept of an ascending pathological process in variable stages that are reflected by alpha-synuclein aggregation at specific predilection sites. To date, more than seven genes are known to cause familial PD. The fact that these genetic forms of Parkinsonism present with clinical features indistinguishable from IPD, but may display neuropathological features that are not consistent with IPD, underscores the need of a more differentiated approach to familial and sporadic forms of Parkinsonism. Indeed, in distinct populations, mutations in one single gene were found to cause the disease in up to 40% of patients formerly described as ,idiopathic' cases. These findings indicate that IPD, as defined by a late-onset disorder with no (apparent) genetic contribution, is part of a clinical syndrome that becomes more and more heterogeneous in terms of aetiology, with overlapping clinical and pathoanatomical features. Thus in the present review, we discuss clues from familial PD to our understanding of the molecular pathogenesis of neurodegeneration with special consideration of the variable clinical and neuropathological aspects. [source]


Mutational and expression analysis of CDK1, cyclinA2 and cyclinB1 in epilepsy-associated glioneuronal lesions

NEUROPATHOLOGY & APPLIED NEUROBIOLOGY, Issue 2 2007
V. Schick
Gangliogliomas and focal cortical dysplasias (FCDs) constitute glioneuronal lesions, which are frequently encountered in biopsy specimens of patients with pharmacoresistant focal epilepsy and relate to impaired differentiation and migration of neural precursors. However, their molecular pathogenesis and relationship are still largely enigmatic. Recent data suggest several components of the insulin-pathway, including TSC1 and TSC2 mutated in tuberous sclerosis complex (TSC), to be altered in gangliogliomas and FCD with Taylor type balloon cells (FCDIIb). The proteins tuberin (TSC2) and hamartin (TSC1) constitute a tumour suppressor mechanism involved in cell-cycle control. Hamartin and/or tuberin were reported to colocalize and/or interact with CDK1, cyclinB1 and cyclinA2 that are critically involved in cell-size and cell-growth control. Here, we have carried out mutational and expression analyses of CDK1, cyclinB1 and cyclinA2 in gangliogliomas and FCDIIb. Mutational screening was performed by single-strand conformation polymorphism analysis in gangliogliomas (n = 20), FCDIIb (n = 35) and controls. CyclinB1 revealed a polymorphism (G to A, cDNA Position 966, GenBank: NM_031966) in exon 7 with similar frequencies in FCDIIb, gangliogliomas and control specimens (FCD n = 9/35; gangliogliomas n = 5/20; control n = 20/100). We used real-time reverse transcription polymerase chain reaction to determine expression levels of CDK1, cyclinB1 and cyclinA2 in 10 FCDIIb and nine gangliogliomas compared with unaffected adjacent control tissue of the same patients. We observed significantly lower expression of CDK1 and cyclinA2 in FCDIIb vs. controls whereas no significant expression differences were present for CDK1, cyclinB1 and cyclinA2 in gangliogliomas. Our data strongly argue against mutational events of CDK1, cyclinB1 and cyclinA2 to play a role in gangliogliomas or FCDIIb. However, a potential functional significance of lower expression for the cell-size and cell-cycle regulators CDK1 and cyclinA2 in FCDIIb composed of large dysplastic neurones and balloon cells needs to be further resolved. [source]


Characterization of childhood precursor T-lymphoblastic lymphoma by immunophenotyping and fluorescent in situ hybridization: A report from the Children's Oncology Group

PEDIATRIC BLOOD & CANCER, Issue 4 2008
Kristi J. Smock MD
Abstract Background T-lymphoblastic lymphoma (T-LBL) accounts for 25,30% of childhood non-Hodgkin's lymphoma and is closely related to T-lymphoblastic leukemia (T-ALL). Recently, we demonstrated distinct differences in gene expression between childhood T-LBL and T-ALL, but molecular pathogenesis and relevant protein expression patterns in T-LBL remain poorly understood. Procedure Children with T-LBL with disseminated disease were registered and treated on COG protocol 5971. Paraffin-embedded tumor tissue was obtained at diagnosis for immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH) studies. We determined the pattern and intensity of staining for c-Myc, Skp2, Mib-1, p53, TCL-1, bcl-2, and bcl-6 proteins by IHC and c-Myc, p53, bcl-2, bcl-6, and TCR ,/, molecular alterations by FISH in 22 pediatric T-LBL cases. Results The majority of T-LBL samples expressed Mib-1 (59%) and c-Myc (77%) proteins in greater than 50% of the cells, but Skp2 (14%), p53 (14%), and bcl-2 (23%) expression was less common. FISH studies demonstrated 18% gains and 10% losses in c-Myc, 16% gains in p53, 12% gains and 6% losses in bcl-2, and 6% gains and 19% losses in bcl-6 with little direct correlation between the IHC and FISH studies. Conclusions Childhood T-LBL is a highly proliferative tumor associated with enhanced expression of c-Myc protein, but without detectable c-Myc molecular alterations. FISH studies did not identify consistent etiologies of molecular dysregulation, and future studies with other molecular approaches may be required to elucidate the molecular pathogenesis of childhood T-LBL. Pediatr Blood Cancer 2008;51:489,494. © 2008 Wiley-Liss, Inc. [source]


Integrated biophysical studies implicate partial unfolding of NBD1 of CFTR in the molecular pathogenesis of F508del cystic fibrosis

PROTEIN SCIENCE, Issue 10 2010
Chi Wang
Abstract The lethal genetic disease cystic fibrosis is caused predominantly by in-frame deletion of phenylalanine 508 in the cystic fibrosis transmembrane conductance regulator (CFTR). F508 is located in the first nucleotide-binding domain (NBD1) of CFTR, which functions as an ATP-gated chloride channel on the cell surface. The F508del mutation blocks CFTR export to the surface due to aberrant retention in the endoplasmic reticulum. While it was assumed that F508del interferes with NBD1 folding, biophysical studies of purified NBD1 have given conflicting results concerning the mutation's influence on domain folding and stability. We have conducted isothermal (this paper) and thermal (accompanying paper) denaturation studies of human NBD1 using a variety of biophysical techniques, including simultaneous circular dichroism, intrinsic fluorescence, and static light-scattering measurements. These studies show that, in the absence of ATP, NBD1 unfolds via two sequential conformational transitions. The first, which is strongly influenced by F508del, involves partial unfolding and leads to aggregation accompanied by an increase in tryptophan fluorescence. The second, which is not significantly influenced by F508del, involves full unfolding of NBD1. Mg-ATP binding delays the first transition, thereby offsetting the effect of F508del on domain stability. Evidence suggests that the initial partial unfolding transition is partially responsible for the poor in vitro solubility of human NBD1. Second-site mutations that increase the solubility of isolated F508del-NBD1 in vitro and suppress the trafficking defect of intact F508del-CFTR in vivo also stabilize the protein against this transition, supporting the hypothesize that it is responsible for the pathological trafficking of F508del-CFTR. [source]


Oxidation of specific methionine and tryptophan residues of apolipoprotein A-I in hepatocarcinogenesis

PROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 18 2005
Jokin Fernández-Irigoyen
Abstract Hepatocellular carcinoma (HCC) is the fifth most common neoplasm with more than 500,000 new cases diagnosed yearly. Although major risk factors of HCC are currently known, the identification of biological targets leading to an early diagnosis of the disease is considered one of the priorities of clinical hepatology. In this work we have used a proteomic approach to identify markers of hepatocarcinogenesis in the serum of a knockout mice deficient in hepatic AdoMet synthesis (MAT1A,/,), as well as in patients with HCC. Three isoforms of apolipoprotein A-I (Apo A-I) with different pI were identified in murine serum. Isoform 1 is up-regulated in the serum of MAT1A,/, mice much earlier than any histological manifestation of liver disease. Further characterization of the differential isoform by electrospray MS/MS revealed specific oxidation of methionine 85 and 216 to methionine sulfoxide while the sequence of the analogous peptides on isoforms 2 and 3 showed the nonoxidized methionine residues. Enrichment of an acidic isoform of Apo A-I was also assessed in the serum of hepatitis B virus patients who developed HCC. Specific oxidation of methionine 112 to methionine sulfoxide and tryptophans 50 and 108 to formylkinurenine were identified selectively in the up-regulated isoform. Although it is not clear at present whether the occurrence of these modifications has a causal role or simply reflects secondary epiphenomena, this selectively oxidized Apo A-I isoform may be considered as a pathological hallmark that may help to the understanding of the molecular pathogenesis of HCC. [source]


Proteomic profiling of animal models mimicking skeletal muscle disorders

PROTEOMICS - CLINICAL APPLICATIONS, Issue 9 2007
Philip Doran
Abstract Over the last few decades of biomedical research, animal models of neuromuscular diseases have been widely used for determining pathological mechanisms and for testing new therapeutic strategies. With the emergence of high-throughput proteomics technology, the identification of novel protein factors involved in disease processes has been decisively improved. This review outlines the usefulness of the proteomic profiling of animal disease models for the discovery of new reliable biomarkers, for the optimization of diagnostic procedures and the development of new treatment options for skeletal muscle disorders. Since inbred animal strains show genetically much less interindividual differences as compared to human patients, considerably lower experimental repeats are capable of producing meaningful proteomic data. Thus, animal model proteomics can be conveniently employed for both studying basic mechanisms of molecular pathogenesis and the effects of drugs, genetic modifications or cell-based therapies on disease progression. Based on the results from comparative animal proteomics, a more informed decision on the design of clinical proteomics studies could be reached. Since no one animal model represents a perfect pathobiochemical replica of all of the symptoms seen in complex human disorders, the proteomic screening of novel animal models can also be employed for swift and enhanced protein biochemical phenotyping. [source]


Six novel mutations of the ADAR1 gene in patients with dyschromatosis symmetrica hereditaria: Histological observation and comparison of genotypes and clinical phenotypes

THE JOURNAL OF DERMATOLOGY, Issue 7 2008
Taisuke KONDO
ABSTRACT Dyschromatosis symmetrica hereditaria (DSH), is a pigmentary genodermatosis of autosomal dominant inheritance. Since we clarified that the disease is caused by a mutation of the adenosine deaminase acting on the RNA 1 gene (ADAR1) in 2003, the molecular pathogenesis of a peculiar clinical feature of the disease has been expected to be clarified. We examined five familial cases and one sporadic case of Japanese families with DSH. The mutation analyses were done with single-strand conformation polymorphism/heteroduplex (SSCP/HD) analysis and direct sequencing of ADAR1. The DNA analysis of each patient revealed one missense mutation (p.F1091S), two nonsense mutations (p.C893X, p.S581X) and three frame-shift mutations (p.E498fsX517, p.F1091fsX1092, p.L855fsX856). Visual and electron microscopic findings showed abundant melanin pigment deposited all over the basal layer, and enlarged melanocytes with long dendrites located in the pigmented lesions with small or immature melanosomes scattered sparsely in the cytoplasm, but in the adjacent keratinocytes many small melanosomes were singly dispersed or aggregated. The hypopigmented areas showed little melanin deposition and reduced numbers of melanocytes in which much degenerative cytoplasmic vacuole formation could be observed by electron microscopy. Herein, we report six cases of DSH with six novel mutations. The variety of their clinical phenotypes even in the pedigree may suggest the presence of factors other than the ADAR1 gene influencing the extent of the clinical skin lesion. Microscopic findings suggest that the clinical appearance must have developed directly by melanocyte variations mainly induced by the ADAR1 gene mutations. [source]


Distinct clinical characteristics of Tuberous Sclerosis Complex patients with no mutation identified

ANNALS OF HUMAN GENETICS, Issue 2 2009
S. E. Camposano
Summary Tuberous Sclerosis Complex (TSC) is a multi-system disorder that is highly variable in its clinical presentation. Current molecular diagnostic methods permit identification of mutations in either TSC1 or TSC2 in 75,85% of TSC patients. Here we examine the clinical characteristics of those TSC patients who have no mutation identified (NMI). A retrospective review of our patient population that had comprehensive testing for mutations in TSC1/TSC2 identified 23/157 (15%) that were NMI. NMI patients had a lower incidence of brain findings on imaging studies, neurological features, and renal findings than those with TSC2 mutations. In contrast, NMI patients had a lower incidence of seizures than TSC patients with TSC1 mutations, but had a higher incidence of both renal angiomyolipomas and pulmonary lymphangioleiomyomatosis. This distinct constellation of findings suggest that NMI patients may have a unique molecular pathogenesis, different from that seen in TSC patients with the usual mutations in TSC1 and TSC2. We suggest that the mechanisms of disease in these patients include both mosaicism for a TSC2 mutation, and unusual non-coding region mutations in TSC2. [source]


Review of the genetics of thyroid tumours: diagnostic and prognostic implications

ANZ JOURNAL OF SURGERY, Issue 1-2 2010
Christopher P. Gilfillan
Abstract Background:, Thyroid nodules are common, but only a small proportion harbour malignancy. Despite this, the frequency of thyroid cancer is on the increase and thyroid malignancy is the most common endocrine malignancy. Preoperative diagnosis is based on ultrasound and radionucleotide imaging as well as the fine-needle aspiration biopsy (FNAB). These biopsies yield a large proportion of indeterminate results due to inadequate material for cytological diagnosis, or due to the cytological similarity of FAs and follicular carcinomas. Recent advances in the understanding of the molecular pathogenesis of thyroid malignancy have led to the detection of characteristic genetic alterations in FNABs. This technology has the potential to increase the specificity of this test, combining cytological with genetic testing to reduce the number of indeterminate results, thereby reducing the number of thyroidectomies performed for benign disease. Methods:, This review examines the evidence for the presence of the common genetic alterations in thyroid cancer and outlines the pathological and clinical correlations of these mutations. The practicality and utility of measuring these genetic alterations in FNAB specimens is also outlined as well as the potential for these tests to alter primary management and follow-up of patients with nodular thyroid disease. Conclusion:, It is likely that a combination of molecular testing and cytological examination of FNAB specimens will prove to be the most efficient and specific method of diagnosing thyroid cancer preoperatively. [source]