Home About us Contact | |||
Molecular Marker Data (molecular + marker_data)
Selected AbstractsEpistatic kinship a new measure of genetic diversity for short-term phylogenetic structures , theoretical investigationsJOURNAL OF ANIMAL BREEDING AND GENETICS, Issue 3 2006C. Flury Summary The epistatic kinship describes the probability that chromosomal segments of length x in Morgan are identical by descent. It is an extension from the single locus consideration of the kinship coefficient to chromosomal segments. The parameter reflects the number of meioses separating individuals or populations. Hence it is suggested as a measure to quantify the genetic distance of subpopulations that have been separated only few generations ago. Algorithms for the epistatic kinship and the extension of the rules to set up the rectangular relationship matrix are presented. The properties of the epistatic kinship based on pedigree information were investigated theoretically. Pedigree data are often missing for small livestock populations. Therefore, an approach to estimate epistatic kinship based on molecular marker data are suggested. For the epistatic kinship based on marker information haplotypes are relevant. An easy and fast method that derives haplotypes and the respective frequencies without pedigree information was derived based on sampled full-sib pairs. Different parameters of the sampling scheme were tested in a simulation study. The power of the method decreases with increasing segment length and with increasing number of segments genotyped. Further, it is shown that the efficiency of the approach is influenced by the number of animals genotyped and the polymorphism of the markers. It is discussed that the suggested method has a considerable potential to allow a phylogenetic differentiation between close populations, where small sample size can be balanced by the number, the length, and the degree of polymorphism of the chromosome segments considered. [source] Diversity in five goat populations of the Lombardy Alps: comparison of estimates obtained from morphometric traits and molecular markersJOURNAL OF ANIMAL BREEDING AND GENETICS, Issue 3 2001P. Crepaldi Phenotypic and genetic variability were studied within and between the goat populations of Bionda dell'Adamello, Frisa, Orobica, Verzaschese and Val di Livo. These are populations reared for most of the year on pastures of the Lombardy Alps, numbering a minimum of 1000 and a maximum of 8000 individuals per breed. The first four are standardized breeds of recent formation; at present they are supported by the European Union measures for the conservation of rare breeds. On the basis of its visible genetic profile the Val di Livo goat may be classified as a primary population. Phenotypic variability was estimated on the basis of six somatic measurements on 60,140 adult goats per breed, whereas genetic variation was measured on the basis of 201 AFLP loci. The partition of the total molecular variation into the within and between breed components indicates that the majority of the molecular variability is conserved within populations, whereas only 8.8% can be attributed to between population variation. Morphometric and molecular marker data produced unrelated distance values and different topology of UPGMA clusters. It may be hypothesized that the morphometric originality of the Val di Livo goat is mostly determined by environmental factors and selection pressure rather than by different origin and genome evolution. Conversely Orobica seems to have diverged from the other breeds at the genome level, which may be explained by an undocumented Southern Italian origin. An objective evaluation of conservation priorities may in the near future be based on the integrated use of molecular markers and of information on quantitative traits and allelic variation with adaptive relevance. Diversité dans cinq populations de chèvres des Alpes lombardes: comparaisons entre estmations obtenues par des mesures somatiques et par des marqueurs moléculaires On a etudié la variabilité phénotypique et génétique entre et parmi les populations de chèvres Bionda dell'Adamello, Frisa, Orobica, Verzaschese et Val di Livo. Il s'agit de populations qui content entre 1000 et 8000 sujets, elevés pour la plus part de l'année sur les pâturages des Alpes de Lombardie. Les quatre premières, actuellement sauvegardées par des mesures communautaires, sont des races à standard recemment constituées. La chèvre de la Val di Livo peut être rangée parmi les races primaires. La diversité phénotypique a été montrée par un dendrogramme obtenus des distances euclidiennes calculées à partir de six mesures somatiques qui avaient été prises sur 60,140 chèvres adultes pour chaque race. La diversité génétique a été montrée par un dendrogramme bâti sur la matrice des distances de Nei obtenues des 201 marqueurs moléculaires AFLP, produits par 7 combinaisons de primers, sur 30 sujets pour chaque race. La décomposition de la variabilité génétique totale estimée par les données moléculaires a montré que la plus part de la variabilité est conservée parmi la population, tandis que seulement l,8,8% peut être imputé aux différences entre populations. Les données moléculaires et somatiques ont donné lieu à des distances qui ne sont pas corrélées et à des cluster avec une topologie nettement différente. La comparaison entre les deux approches permet d'avancer l'hypothèse que l'originalité somatique de la chèvre de la Val di Livo pourrait être due à des facteurs d'environnement et/ou à la pression de sélection plutôt qu'à des facteurs liés à l'évolution du genome. Au contraire ces derniers seraient responsables de l'originalité génétique de la race Orobica et confirmeraient des témoignages orals non documentés. Un choix objectif des ressources génétiques qui méritent d'être conservées pourra probablement se baser sur l'employ conjoint des marqueurs et de renseignements sur les caractères quantitatifs et sur les variantes alléliques des gènes qui ont une valeur adaptative. Diversität in fünf Ziegenpopulationen der lombardischen Alpen: Vergleich von Schätzungen auf der Basis morphologischer Eigenschaften und molekularer Marker Es wurden die phänotypische und genetische Variabilität innerhalb und zwischen Bionda dell'Adamello, Frisa, Orobica, Verzaschese und Val di Livo Ziegenpopulationen untersucht. Diese Populationen, mit Größen zwischen 1000 und 8000 Tieren, werden den größten Teil des Jahres auf Weiden der lombardischen Alpen gehalten. Die vier erstgenannten Populationen sind erst kürzlich standardisierte Rassen; gegenwärtig werden sie mit EU-Mitteln für die Erhaltung seltener Rassen, unterstützt. Auf der Basis des erkennbaren genetischen Profils muß die Rasse Val di Livo als eine Primärpopulation eingeordnet werden. Phänotypische Variabilität wurde auf der Basis von sechs Körpermaßen an 60,140 ausgewachsenen Ziegen je Rasse geschätzt, die genetische Variation wurde auf der Basis von 201 AFLP-Loci gemessen. Die Aufteilung der gesamten molekularen Varianz in Varianzkomponenten innerhalb und zwischen Populationen zeigt, daß der größte Teil der molekularen Variabilität innerhalb der Populationen auftritt, und nur 8,8% der Gesamtvarianz auf die Varianz zwischen den Populationen entfällt. Morphologische und molekulare Marker erzeugten unabhängige Distanzwerte und unterschiedliche upgma-Cluster. Es kann die Hypothese aufgestellt werden, daß die morphologische Einzigartigkeit der Val di Livo Ziege stärker auf Umwelteffekte und Selektionsdruck als auf eine unterschiedliche Herkunft oder genomische Evolution zurückzuführen ist. Dagegen scheint Orobica auf Genomebene von den anderen Rassen abzuweichen, was durch einen nicht dokumentierten süditalienischen Ursprung erklärt werden könnte. Eine objektive Bewertung von Prioritäten für Konservierungsmaßnahmen dürfte in Zukunft auf einen integrierten Gebrauch molekularer Marker, Informationen über quantitative Merkmale sowie der genetischen Variation bezüglich der Adaptationsfähigkeit basieren. [source] Bayesian identification of admixture events using multilocus molecular markersMOLECULAR ECOLOGY, Issue 10 2006JUKKA CORANDER Abstract Bayesian statistical methods for the estimation of hidden genetic structure of populations have gained considerable popularity in the recent years. Utilizing molecular marker data, Bayesian mixture models attempt to identify a hidden population structure by clustering individuals into genetically divergent groups, whereas admixture models target at separating the ancestral sources of the alleles observed in different individuals. We discuss the difficulties involved in the simultaneous estimation of the number of ancestral populations and the levels of admixture in studied individuals' genomes. To resolve this issue, we introduce a computationally efficient method for the identification of admixture events in the population history. Our approach is illustrated by analyses of several challenging real and simulated data sets. The software (baps), implementing the methods introduced here, is freely available at http://www.rni.helsinki.fi/~jic/bapspage.html. [source] How to use molecular marker data to measure evolutionary parameters in wild populationsMOLECULAR ECOLOGY, Issue 7 2005DANY GARANT Abstract Estimating the genetic basis of phenotypic traits and the selection pressures acting on them are central to our understanding of the evolution and conservation of wild populations. However, obtaining such evolutionary-related parameters is not an easy task as it requires accurate information on both relatedness among individuals and their breeding success. Polymorphic molecular markers are very useful in estimating relatedness between individuals and parentage analyses are now extensively used in most taxa. The next step in the application of molecular data to wild populations is to use them to derive estimates of evolutionary-related parameters for quantitative traits, such as quantitative genetic parameters (e.g. heritability, genetic correlations) and measures of selection (e.g. selection gradients). Despite their great appeal and potential, the optimal use of molecular tools is still debated and it remains unclear how they should best be used to obtain reliable estimates of evolutionary parameters in the wild. Here, we review the methods available for estimating quantitative genetic and selection parameters and discuss their merits and shortcomings, to provide a tool that summarizes the potential uses of molecular data to obtain such parameters in wild populations. [source] Does natural selection promote population divergence?MOLECULAR ECOLOGY, Issue 12 2002A comparative analysis of population structure using amplified fragment length polymorphism markers, quantitative traits Abstract Divergent natural selection is considered an important force in plant evolution leading to phenotypic differentiation between populations exploiting different environments. Extending an earlier greenhouse study of population differentiation in the selfing annual plant Senecio vulgaris, we estimated the degree of population divergence in several quantitative traits related to growth and life history and compared these estimates with those based on presumably neutral molecular markers (amplified fragment length polymorphisms; AFLPs). This approach allowed us to disentangle the effects of divergent selection from that of other evolutionary forces (e.g. genetic drift). Five populations were examined from each of two habitat types (ruderal and agricultural habitats). We found a high proportion of total genetic variance to be among populations, both for AFLP markers (,ST = 0.49) and for quantitative traits (range of QST: 0.26,0.77). There was a strong correlation between molecular and quantitative genetic differentiation between pairs of populations (Mantel's r = 0.59). However, estimates of population differentiation in several quantitative traits exceeded the neutral expectation (estimated from AFLP data), suggesting that divergent selection contributed to phenotypic differentiation, especially between populations from ruderal and agricultural habitats. Estimates of within-population variation in AFLP markers and quantitative genetic were poorly correlated, indicating that molecular marker data may be of limited value to predict the evolutionary potential of populations of S. vulgaris. [source] delrious: a computer program designed to analyse molecular marker data and calculate delta and relatedness estimates with confidenceMOLECULAR ECOLOGY RESOURCES, Issue 3 2001J. Stone Abstract The computer program delrious analyses molecular marker data and calculates delta and relatedness estimates. A computer simulation is presented in which delrious is used to determine relations between relatedness estimate confidence and locus number. The results obtained suggest that many kinship studies probably have been conducted at significance levels less than 95%. Confidence measures provide a means of assessing reliability of calculated parameters and, therefore, would be beneficial to kinship hypothesis testing. Consequently, resampling procedures should be conducted routinely to determine delta and relatedness estimate confidence. delrious can implement bootstrap and jackknife resampling procedures for this purpose. [source] Genetic diversity revealed by morphological traits and ISSR markers in hazelnut germplasm from northern SpainPLANT BREEDING, Issue 4 2010J. J. Ferreira With 3 figures and 4 tables Abstract Hazelnut (Corylus avellana L.) has been a traditional crop in northern Spain. As a result of germplasm exploration over 3 years (2003,05), 90 trees were selected in this region. This study describes phenotypic variation in nut and husk traits and investigates genetic relationships among selections and cultivars using inter simple sequences repeat (ISSR) markers. The local selections were phenotypically diverse and many had characteristics appreciated by the market. Eleven ISSR primers, which generated 66 polymorphic bands, were used in the analysis. The graph from principal coordinates analysis of the molecular marker data showed two main groups, one for the local selections and the other for the standard cultivars. The dendrogram generated from UPGMA cluster analysis showed the same two main groups. The results suggest that the local accessions are closely related to each other, but are relatively distant from the standard cultivars of eastern Spain, Italy and the USA. Selections from northern Spain may be directly useful as new cultivars or alternatively as parents in breeding programmes. The collection and preservation of this genetic diversity is important. [source] Molecular marker-based pedigrees for animal conservation biologistsANIMAL CONSERVATION, Issue 1 2010O. R. Jones Abstract Pedigrees, depicting the genealogical relationships between individuals in a population, are of fundamental importance to several research areas including conservation biology. For example, they are useful for estimating inbreeding, heritability, selection, studying kin selection and for measuring gene flow between populations. Pedigrees constructed from direct observations of reproduction are usually unavailable for wild populations. Therefore, pedigrees for these populations are usually estimated using molecular marker data. Despite their obvious importance, and the fact that pedigrees are conceptually well understood, the methods, and limitations of marker-based pedigree inference are often less well understood. Here we introduce animal conservation biologists to molecular marker-based pedigrees. We briefly describe the history of pedigree inference research, before explaining the underlying theory and basic mechanics of pedigree construction using standard methods. We explain the assumptions and limitations that accompany many of these methods, before going on to explain methods that relax several of these assumptions. Finally, we look to future and discuss some recent exciting advances such as the use of single-nucleotide polymorphisms, inference of multigenerational pedigrees and incorporation of non-genetic data such as field observations into the calculations. We also provide some guidelines on efficient marker selection in order to maximize accuracy and power. Throughout we use examples from the field of animal conservation and refer readers to appropriate software where possible. It is our hope that this review will help animal conservation biologists to understand, choose, and use the methods and tools of this fast-moving field. [source] |