Molecular Genetic Markers (molecular + genetic_marker)

Distribution by Scientific Domains


Selected Abstracts


Evaluation of SPATA1 -associated markers for stallion fertility

ANIMAL GENETICS, Issue 4 2009
K. Giesecke
Summary Stallion fertility is an economically important trait because the use of artificial insemination is increasing in the horse industry and superior sires are used more intensely. Molecular genetic markers may be useful as early indicators for a stallion's fertility and genetic improvement programmes. The testis-specific SPATA1 protein is involved in shaping the sperm head during spermatogenesis. Thus, the spermatogenesis associated 1 (SPATA1) gene was chosen as candidate for stallion fertility, and we analysed intragenic single nucleotide polymorphisms (SNPs) as genetic markers for the least square means (LSM) of the pregnancy rate per oestrus of stallions and breeding values (BV) for the paternal and embryonic component of the pregnancy rate per oestrus. We sequenced the cDNA of SPATA1 to verify the annotated mRNA sequence. One SPATA1 -associated intronic SNP (BIEC2-968854) showed a significant association with the embryonic component of BVs of stallions for the pregnancy rate per oestrus. The embryonic component of BVs was positively associated with homozygous C/C stallions. Both the additive and dominance effects were significant with values of ,5.8% (P = 0.01) and ,6.4% (P = 0.02) for the embryonic component of BVs. For the same SNP, a suggestive association was found for the LSM of the pregnancy rate per oestrus of stallions. Heterozygous stallions had higher pregnancy rates per oestrus than homozygous stallions. The dominance effect was 4.1% with a nominal P -value of 0.02. The SNP BIEC2-968854 can change an SP1 binding site and thus we assume that gene regulation may be influenced through this intronic mutation. This is the first report on SPATA1 being associated with the pregnancy rate per oestrus for stallions. [source]


Measuring and interpreting genetic structure to minimize the genetic risks of translocations

AQUACULTURE RESEARCH, Issue 1 2000
M S. Johnson
Genetic subdivision of a species indicates the potential for local adaptation, and the genetic differences among populations are a key component of genetic diversity. Molecular genetic markers are generally used to assess the extent and pattern of subdivision. These traits provide an abundance of simple genetic markers, and they allow comparisons across studies. However, the connection of molecular genetic variation to local adaptation and, hence, to possible genetic problems of translocation, is weak. In the extreme case of no genetic subdivision, there is no reason to expect genetic problems with translocation. Where there is deep genetic structure, indicating substantial evolutionary independence of sets of populations, translocations may threaten basic components of genetic diversity. Between these extremes, however, predicting genetic problems of translocations is extremely difficult. The molecular markers used to measure genetic structure indicate where there has been opportunity for local adaptation, but they are not directly related to such adaptation. The relationship of the level of genetic divergence to genetic incompatibilities is very loose, although quantitative tests are scarce. However, studies of reproductive isolation between species illustrate the fundamental inadequacy of using measures of genetic divergence to predict interactions between populations. Although it is tempting to use simple measures as predictors, such use may provide a false sense of scientific rigour. There is no substitute for direct tests for variation in ecologically relevant traits and possible genetic incompatibilities among populations. [source]


Inter-ocean dispersal is an important mechanism in the zoogeography of hakes (Pisces: Merluccius spp.)

JOURNAL OF BIOGEOGRAPHY, Issue 6 2001
W. Stewart Grant
Aim To present new genetic data and to review available published genetic data that bear on the phylogeny of hakes in the genus Merluccius. To construct a zoogeographical model from a summary phylogenetic tree with dated nodes. To search for an explanation of antitropical distributions in hakes. To assess peripheral isolate, centrifugal and vicariance models of speciation in view of the molecular phylogeny and zoogeography of hakes. Locations Northern and southern Atlantic Ocean, eastern Pacific Ocean, South Pacific Ocean. Methods Electrophoretic analysis of 20 allozyme loci in 10 species of hakes. Phylogenetic tree construction with parsimony and bootstrap methods. Reanalysis of previous genetic data. Analysis of zoogeographical patterns with geographical distributions of molecular genetic markers. Results Phylogenetic analyses of new and previous allozyme data and previous mitochondrial DNA data indicate a deep genetic partition between Old- and New-World hakes with genetic distances corresponding to 10,15 Myr of separation. This time marks a widening rift between Europe and North America and a rapid drop in ocean temperatures that subdivided an ancestral population of North Atlantic hake. Two Old-World clades spanning the equator include pairs of sister taxa separated by tropical waters. Divergence times between these pairs of sister-taxa variously date to the early Pliocene and late Pleistocene. Amongst New-World hakes, pairs of sister taxa are separated by equatorial waters, by the Southern Ocean, and by the Panama Isthmus. These genetic separations reflect isolation by the rise of the Isthmus 3,4 Ma and by Pliocene and Pleistocene dispersals. Pairs of species occurring in sympatry or parapatry in six regions do not reflect sister-species relationships, but appear to reflect allopatric divergence and back dispersals of descendent species. Some geographically isolated regional populations originating within the last few hundreds of thousands of years merit subspecies designations. Conclusions Vicariance from tectonic movement of continental plates or ridge formation cannot account for the disjunct distributions of most hake sister taxa. Molecular genetic divergences place the origin of most hake species diversity in the last 2,3 Myr, a period of negligible tectonic activity. Distributions of many hake species appear to have resulted from dispersals and back dispersals across both warm equatorial waters and cool waters in the Southern Ocean, driven by oscillations in climate and ocean temperatures. Genetic and ecological divergence prevents hybridization and competitive exclusion between sympatric species pairs in six regions. Sister-taxa relationships and estimates of divergence are consistent with the modified peripheral isolate model of speciation in which vicariances, range expansions and contractions, dispersals and founder events lead to isolated populations that subsequently diverge to form new species. [source]


Admixture facilitates adaptation from standing variation in the European aspen (Populus tremula L.), a widespread forest tree

MOLECULAR ECOLOGY, Issue 8 2010
DULCINEIA DE CARVALHO
Abstract Adaptation to new environments can start from new mutations or from standing variation already present in natural populations. Whether admixture constrains or facilitates adaptation from standing variation is largely unknown, especially in ecological keystone or foundation species. We examined patterns of neutral and adaptive population divergence in Populus tremula L., a widespread forest tree, using mapped molecular genetic markers. We detected the genetic signature of postglacial admixture between a Western and an Eastern lineage of P. tremula in Scandinavia, an area suspected to represent a zone of postglacial contact for many species of animals and plants. Stringent divergence-based neutrality tests provided clear indications for locally varying selection at the European scale. Six of 12 polymorphisms under selection were located less than 1 kb away from the nearest gene predicted by the Populus trichocarpa genome sequence. Few of these loci exhibited a signature of ,selective sweeps' in diversity-based tests, which is to be expected if adaptation occurs primarily from standing variation. In Scandinavia, admixture explained genomic patterns of ancestry and the nature of clinal variation and strength of selection for bud set, a phenological trait of great adaptive significance in temperate trees, measured in a common garden trial. Our data provide a hitherto missing direct link between past range shifts because of climatic oscillations, and levels of standing variation currently available for selection and adaptation in a terrestrial foundation species. [source]


Mechanisms of Regulation of Litter Size in Pigs on the Genome Level

REPRODUCTION IN DOMESTIC ANIMALS, Issue 2007
O Distl
Contents Improvement in litter size has become of great interest in pig industry as good fecundity is directly related to a sow's productive life. Genetic regulation of litter size is complex and the main component traits so far defined are ovulation rate, embryonic survival, uterus capacity, foetal survival and pre-weaning losses. Improvements using concepts of the quantitative genetics let expect only slow genetic progress due to its low heritability of approximately 0.09 for number of piglets born alive. Marker assisted selection allows to dissect litter size in its component traits and using molecular genetic markers for the components of litter size traits promises more progress and advantages in optimum balancing of the different physiological mechanisms influencing litter size. In this review, efforts being made to unravel the genetic determinants of litter size are accounted and discussed. For litter size traits, more than 50 quantitative trait loci (QTL) were mapped and in more than 12 candidate genes associations confirmed. The number of useful candidate genes is much larger as shown by expression profiles and in addition, much more QTL can be assumed. These functional genomic approaches, both QTL mapping and candidate gene analysis, have to be merged for a better understanding of a wider application across different pig breeds and lines. Newly developed tools based on microarray techniques comprising DNA variants or expressed tags of many genes or even the whole genome appear useful for in depth understanding of the genetics of litter size in pigs. [source]


A polymorphism within the equine CRISP3 gene is associated with stallion fertility in Hanoverian warmblood horses

ANIMAL GENETICS, Issue 3 2007
H. Hamann
Summary Fertility of stallions is of high economic importance, especially for large breeding organisations and studs. Breeding schemes with respect to fertility traits and selection of stallions at an early stage may be improved by including molecular genetic markers associated with traits. The genes coding for equine cysteine-rich secretory proteins (CRISPs) are promising candidate genes because previous studies have shown that CRISPs play a role in the fertilising ability of male animals. We have previously characterised the three equine CRISP genes and identified a non-synonymous polymorphism in the CRISP1 gene. In this study, we report one non-synonymous polymorphism in the CRISP2 gene and four non-synonymous polymorphisms in the CRISP3 gene. All six CRISP polymorphisms were genotyped in 107 Hanoverian breeding stallions. Insemination records of stallions were used to analyse the association between CRISP polymorphisms and fertility traits. Three statistical models were used to evaluate the influence of single mutations, genotypes and haplotypes of the polymorphisms. The CRISP3 AJ459965:c.+622G>A SNP leading to the amino acid substitution E208K was significantly associated with the fertility of stallions. Stallions heterozygous for the CRISP3 c.+622G>A SNP had lower fertility than homozygous stallions (P = 0.0234). The pregnancy rate per cycle in these stallions was estimated to be ,7% lower than in stallions homozygous at this position. [source]