Home About us Contact | |||
Molecular Genetic Basis (molecular + genetic_basis)
Selected AbstractsHypertrophic cardiomyopathy: from genetics to treatmentEUROPEAN JOURNAL OF CLINICAL INVESTIGATION, Issue 4 2010Ali J. Marian Eur J Clin Invest 2010; 40 (4): 360,369 Abstract Background, Hypertrophic cardiomyopathy (HCM) is the prototypic form of pathological cardiac hypertrophy. HCM is an important cause of sudden cardiac death in the young and a major cause of morbidity in the elderly. Design, We discuss the clinical implications of recent advances in the molecular genetics of HCM. Results, The current diagnosis of HCM is neither adequately sensitive nor specific. Partial elucidation of the molecular genetic basis of HCM has raised interest in genetic-based diagnosis and management. Over a dozen causal genes have been identified. MYH7 and MYBPC3 mutations account for about 50% of cases. The remaining known causal genes are uncommon and some are rare. Advances in DNA sequencing techniques have made genetic screening practical. The difficulty, particularly in the sporadic cases and in small families, is to discern the causal from the non-causal variants. Overall, the causal mutations alone have limited implications in risk stratification and prognostication, as the clinical phenotype arises from complex and often non-linear interactions between various determinants. Conclusions, The clinical phenotype of ,HCM' results from mutations in sarcomeric proteins and subsequent activation of multiple cellular constituents including signal transducers. We advocate that HCM, despite its current recognition and management as a single disease entity, involves multiple partially independent mechanisms, despite similarity in the ensuing phenotype. To treat HCM effectively, it is necessary to delineate the underlying fundamental mechanisms that govern the pathogenesis of the phenotype and apply these principles to the treatment of each subset of clinically recognized HCM. [source] Individual differences in allocation of funds in the dictator game associated with length of the arginine vasopressin 1a receptor RS3 promoter region and correlation between RS3 length and hippocampal mRNAGENES, BRAIN AND BEHAVIOR, Issue 3 2008A. Knafo Human altruism is a widespread phenomenon that puzzled evolutionary biologists since Darwin. Economic games illustrate human altruism by showing that behavior deviates from economic predictions of profit maximization. A game that most plainly shows this altruistic tendency is the Dictator Game. We hypothesized that human altruistic behavior is to some extent hardwired and that a likely candidate that may contribute to individual differences in altruistic behavior is the arginine vasopressin 1a (AVPR1a) receptor that in some mammals such as the vole has a profound impact on affiliative behaviors. In the current investigation, 203 male and female university students played an online version of the Dictator Game, for real money payoffs. All subjects and their parents were genotyped for AVPR1a RS1 and RS3 promoter-region repeat polymorphisms. Parents did not participate in online game playing. As variation in the length of a repetitive element in the vole AVPR1a promoter region is associated with differences in social behavior, we examined the relationship between RS1 and RS3 repeat length (base pairs) and allocation sums. Participants with short versions (308,325 bp) of the AVPR1a RS3 repeat allocated significantly (likelihood ratio = 14.75, P = 0.001, df = 2) fewer shekels to the ,other' than participants with long versions (327,343 bp). We also implemented a family-based association test, UNPHASED, to confirm and validate the correlation between the AVPR1a RS3 repeat and monetary allocations in the dictator game. Dictator game allocations were significantly associated with the RS3 repeat (global P value: likelihood ratio ,2 = 11.73, df = 4, P = 0.019). The association between the AVPR1a RS3 repeat and altruism was also confirmed using two self-report scales (the Bardi,Schwartz Universalism and Benevolence Value-expressive Behavior scales). RS3 long alleles were associated with higher scores on both measures. Finally, long AVPR1a RS3 repeats were associated with higher AVPR1a human post-mortem hippocampal messenger RNA levels than short RS3 repeats (one-way analysis of variance (ANOVA): F = 15.04, P = 0.001, df = 14) suggesting a functional molecular genetic basis for the observation that participants with the long RS3 repeats allocate more money than participants with the short repeats. This is the first investigation showing that a common human polymorphism, with antecedents in lower mammals, contributes to decision making in an economic game. The finding that the same gene contributing to social bonding in lower animals also appears to operate similarly in human behavior suggests a common evolutionary mechanism. [source] Sequence diversity and haplotype associations with phenotypic responses to crowding: GIGANTEA affects fruit set in Arabidopsis thalianaMOLECULAR ECOLOGY, Issue 14 2007MARCUS T. BROCK Abstract Identifying the molecular genetic basis of intraspecific variation in quantitative traits promises to provide novel insight into their evolutionary history as well as genetic mechanisms of adaptation. In an attempt to identify genes responsible for natural variation in competitive responses in Arabidopsis thaliana, we examined DNA sequence diversity at seven loci previously identified as members of the phytochrome B signalling network. For one gene, GIGANTEA (GI), we detected significant haplotype structure. To test for GI haplogroup,phenotype associations, we genotyped 161 A. thaliana accessions at GI and censused the same accessions for total fruit set and the expression of three phenotypic traits (days to flowering, petiole length, and inflorescence height) in a greenhouse experiment where plants were grown in crowded and uncrowded environments. We detected a significant association between GI and total fruit set that resulted in a 14% difference in average fruit set among GI haplogroups. Given that fruit set is an important component of fitness in this species and given the magnitude of the effect, the question arises as to how variation at this locus is maintained. Our observation of frequent and significant epistasis between GI and background single nucleotide polymorphisms (SNP), where the fitness ranking of the GI allele either reverses or does not differ depending on the allele at the interacting SNP, suggests that epistatic selection may actively maintain or at least slow the loss of variation at GI. This result is particularly noteworthy in the light of the ongoing debate regarding the genetic underpinnings of phenotypic evolution and recent observations that epistasis for phenotypic traits and components of fitness is common in A. thaliana. [source] Susceptibility genes in movement disordersMOVEMENT DISORDERS, Issue 7 2008Sonja Scholz MD Abstract During the last years, remarkable progress in our understanding of molecular genetic mechanisms underlying movement disorders has been achieved. The successes of linkage studies, followed by positional cloning, have dominated the last decade and several genes underlying monogenic disorders have been discovered. The pathobiological understanding garnered from these mutations has laid the foundation for much of the search for genetic loci that confer risk for, rather than cause, disease. With the introduction of whole genome association studies as a novel tool to investigate genetic variation underlying common, complex diseases, a new era in neurogenomics has just begun. As the field rapidly moves forward several new challenges and critical questions in clinical care have to be addressed. In this review, we summarize recent advances in the discovery of susceptibility loci underlying major movement disorders, explain the newest methodologies and tools employed for finding and characterizing genes and discuss how insights into the molecular genetic basis of neurological disorders will impact therapeutic concepts in patient care. © 2008 Movement Disorder Society [source] |