Home About us Contact | |||
Molecular Entities (molecular + entity)
Selected AbstractsPhotoswitches: From Molecules to MaterialsADVANCED MATERIALS, Issue 31 2010Maria-Melanie Russew Abstract Small organic molecules, capable of undergoing efficient and reversible photochemical reactions to switch them between (at least) two (meta)stable isomers associated with markedly different properties, continue to impact the materials world. Such photoswitches are being implemented in a variety of materials for applications ranging from optical devices to "smart" polymers. All approaches exploit the photoswitching molecular entities as gates, which translate an incoming light stimulus to trigger macroscopic property changes of the materials. In this progress report, the most promising recent examples in this field are highlighted and put in perspective. Moving from supramolecular systems in solution to surfaces and finally to bulk materials, important design concepts are discussed, emphasizing both the challenges as well as the great promise of such truly advanced materials. [source] Non-invasive systemic drug delivery: Developability considerations for alternate routes of administrationJOURNAL OF PHARMACEUTICAL SCIENCES, Issue 1 2010Neil R. Mathias Abstract Over the past few decades alternate routes of administration have gained significant momentum and attention, to complement approved drug products, or enable those that cannot be delivered by the oral or parenteral route. Intranasal, buccal/sublingual, pulmonary, and transdermal routes being the most promising non-invasive systemic delivery options. Considering alternate routes of administration early in the development process may be useful to enable new molecular entities (NME) that have deficiencies (extensive first-pass metabolism, unfavorable physicochemical properties, gastro-intestinal adverse effects) or suboptimal pharmacokinetic profiles that are identified in preclinical studies. This review article describes the various delivery considerations and extraneous factors in developing a strategy to pursue an alternate route of administration for systemic delivery. The various delivery route options are outlined with their pros and cons; key criteria and physicochemical attributes that would make a drug a suitable candidate are discussed; approaches to assess delivery feasibility, toxicity at the site of delivery, and overall developability potential are described; and lastly, product trends and their disease implications are highlighted to underscore treatment precedence that help to build scientific rationale for the pursuit of an alternate route of administration. © 2009 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 99:1,20, 2010 [source] Sizing up Ethanol-Induced Plasticity: The Role of Small and Large Conductance Calcium-Activated Potassium ChannelsALCOHOLISM, Issue 7 2009Patrick J. Mulholland Small (SK) and large conductance (BK) Ca2+ -activated K+ channels contribute to action potential repolarization, shape dendritic Ca2+spikes and postsynaptic responses, modulate the release of hormones and neurotransmitters, and contribute to hippocampal-dependent synaptic plasticity. Over the last decade, SK and BK channels have emerged as important targets for the development of acute ethanol tolerance and for altering neuronal excitability following chronic ethanol consumption. In this mini-review, we discuss new evidence implicating SK and BK channels in ethanol tolerance and ethanol-associated homeostatic plasticity. Findings from recent reports demonstrate that chronic ethanol produces a reduction in the function of SK channels in VTA dopaminergic and CA1 pyramidal neurons. It is hypothesized that the reduction in SK channel function increases the propensity for burst firing in VTA neurons and increases the likelihood for aberrant hyperexcitability during ethanol withdrawal in hippocampus. There is also increasing evidence supporting the idea that ethanol sensitivity of native BK channel results from differences in BK subunit composition, the proteolipid microenvironment, and molecular determinants of the channel-forming subunit itself. Moreover, these molecular entities play a substantial role in controlling the temporal component of ethanol-associated neuroadaptations in BK channels. Taken together, these studies suggest that SK and BK channels contribute to ethanol tolerance and adaptive plasticity. [source] Postmarketing drug dosage changes of 499 FDA-approved new molecular entities, 1980,1999,PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, Issue 6 2002James Cross MS Abstract Purpose Risks and benefits of marketed drugs can be improved by changing their labels to optimize dosage regimens for indicated populations. Such postmarketing label changes may reflect the quality of pre-marketing development, regulatory review, and postmarketing surveillance. We documented dosage changes of FDA-approved new molecular entities (NMEs), and investigated trends over time and across therapeutic groups, on the premise that improved drug development methods have yielded fewer postmarketing label changes over time. Methods We compiled a list of NMEs approved by FDA from 1 January 1980 to 31 December 1999 using FDA's website, Freedom of Information Act request, and PhRMA (Pharmaceutical Research and Manufacturers of America) database. Original labeled dosages and indicated patient populations were tracked in labels in the Physician's Desk Reference®. Time and covariate-adjusted risks for dosage changes by 5-year epoch and therapeutic groups were estimated by survival analysis. Results Of 499 NMEs, 354 (71%) were evaluable. Dosage changes in indicated populations occurred in 73 NMEs (21%). A total of 58 (79%) were safety-motivated, net dosage decreases. Percentage of NMEs with changes by therapeutic group ranged from 27.3% for neuropharmacologic drugs to 13.6% for miscellaneous drugs. Median time to change following approval fell from 6.5 years (1980,1984) to 2.0 years (1995,1999). Contrary to our premise, 1995,1999 NMEs were 3.15 times more likely to change in comparison to 1980,1984 NMEs (p,=,0.008, Cox analysis). Conclusions Dosages of one in five NMEs changed, four in five changes were safety reductions. Increasing frequency of changes, independent of therapeutic group, may reflect intensified postmarketing surveillance and underscores the need to improve pre-marketing optimization of dosage and indicated population. Copyright © 2002 John Wiley & Sons, Ltd. [source] Affinity reagent resources for human proteome detection: Initiatives and perspectivesPROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 16 2007Oda Stoevesandt Abstract Essential to the ambition of characterising fully the human proteome are systematic and comprehensive collections of specific affinity reagents directed against all human proteins, including splice variants and modifications. Although a large number of affinity reagents are available commercially, their quality is often questionable and only a fraction of the proteome is covered. In order for more targets to be examined, there is a need for broad availability of panels of affinity reagents, including binders against proteins of unknown functions. The most familiar affinity reagents are antibodies and their fragments, but engineered forms of protein scaffolds and nucleic acid aptamers with similar diversity and binding properties are becoming viable alternatives. Recent initiatives in Europe and the USA have been established to improve both the availability and quality of reagents for affinity proteomics, with the ultimate aim of creating standardised collections of well-validated binding molecules for proteome analysis. As well as coordinating affinity reagent production through existing resources and technology providers, these projects aim to benchmark key molecular entities, tools, and applications, and establish the bioinformatics framework and databases needed. The benefits of such reagent resources will be seen in basic research, medicine and the biotechnology and pharmaceutical industries. [source] Unsolvated 5,10,15,20-tetra-4-pyridylporphyrin, its sesquihydrate and its 2-chlorophenol disolvate: conformational versatility of the ligandACTA CRYSTALLOGRAPHICA SECTION C, Issue 9 2009Sophia Lipstman Unsolvated 5,10,15,20-tetra-4-pyridylporphyrin, C40H26N8, (I), its sesquihydrate, C40H26N8·1.514H2O, (II), and its 2-chlorophenol disolvate, C40H26N8·2C6H5ClO, (III), reveal different conformational features of the porphyrin core. In (I), the latter is severely deformed from planarity, apparently in order to optimize the intermolecular interactions and efficient crystal packing of the molecular entities. The molecular framework has a C1 symmetry. In (II), the porphyrin molecules are located on symmetry axes, preserving the marked deformation from planarity of the porphyrin core. The molecular units are interlinked into a single-framework supramolecular architecture by hydrogen bonding to one another via molecules of water, which lie on twofold rotation axes. In (III), the porphyrin molecules are located across centres of inversion and are characterized by a planar conformation of the 24-membered macrocyclic porphyrin ring. Two trans -related pyridyl substituents are hydrogen bonded to the 2-chlorophenol solvent molecules. The interporphyrin organization in (III) is similar to that observed for many other tetraarylporphyrin compounds. However, the organization observed in (I) and (II) is different and of a type rarely observed before. This study reports for the first time the crystal structure of the unsolvated tetrapyridylporphyrin. [source] Liver X receptor agonism promotes articular inflammation in murine collagen-induced arthritisARTHRITIS & RHEUMATISM, Issue 9 2009Darren L. Asquith Objective Liver X receptors (LXRs) have previously been implicated in the regulation of inflammation and have, in general, been ascribed an antiinflammatory role. This study was therefore undertaken to explore the biologic mechanisms of LXRs in vivo and in vitro in an experimental inflammatory arthritis model. Methods Male DBA/1 mice were immunized with type II collagen and treated from an early or established stage of arthritis with 2 different concentrations of the LXR agonists T1317 and GW3965 or vehicle control. The mice were monitored for articular inflammation and cartilage degradation by scoring for clinical signs of arthritis, histologic examination of the joints, and analysis of serum cytokine and antibody levels. In vitro, primary human monocytes and T cells were cultured in the presence of GW3965 or T1317, and the concentrations of proinflammatory cytokines were measured by multiplex assay. Results Contrary to expectations, LXR agonism with the use of 2 discrete, specific molecular entities led to substantial exacerbation of articular inflammation and cartilage destruction in this murine collagen-induced arthritis model. This was associated ex vivo with elevated cytokine expression, with enhanced Th1 and Th17 cellular responses, and with elevated collagen-specific autoantibody production. In vitro, LXR agonists, in concert with lipopolysaccharide, promoted cytokine and chemokine release from human monocytes, and similar effects were observed in a T cell,macrophage coculture model that closely recapitulates the pathways that drive synovial cytokine release. Conclusion Since LXRs are present in rheumatoid arthritis (RA) synovium, these results suggest that LXR-mediated pathways could exacerbate the chronic inflammatory response typical of RA. [source] Design of a Molecular QuasicrystalCHEMPHYSCHEM, Issue 8 2006Zhongfu Zhou Dr. Designer materials: The authors propose a design strategy for a quasicrystalline material composed of discrete molecular entities. The molecular quasicrystal (see figure), which is based on a standard Penrose tiling, is energetically stable and gives rise to a 10-fold symmetric diffraction pattern. The strategy may be further exploited to design molecular quasicrystals based on a range of different types of quasiperiodic arrays. [source] A novel synthetic adjuvant enhances dendritic cell functionIMMUNOLOGY, Issue 1pt2 2009Karen S. M. Phillipps Summary The lipid core peptide (LCP) is a novel, synthetic, self-adjuvanted vaccine delivery system that neatly incorporates the adjuvant, carrier and antigenic peptides of a vaccine into a single molecular entity. This system has been previously shown to efficiently deliver vaccines and induce immunity. Because adjuvants target sentinels of the immune response, such as dendritic cells (DCs), that are widely distributed throughout the body to initiate specific immune responses, we investigated the effects of the adjuvant on DCs. Here we show that LCP targets vaccines to DCs and induces their activation. [source] Molecular mechanisms of intercellular communication in the hormonal and neural systemsIUBMB LIFE, Issue 5-6 2006Shigetada Nakanishi Abstract This paper reviews our studies that have addressed the molecular mechanisms underlying the biosynthesis and reception of extracellular signaling molecules and integrative mechanisms of extracellular-intracellular signaling transmission in biological systems. We introduced recombinant DNA technology into the neuroendocrine system and established the concept that a single peptide precursor encompasses multiple biologically active peptides and brings about coordinate functions in various biological systems. We then developed a novel functional cloning of membrane receptors and ion channels by combining an oocyte expression system with electrophysiology. We molecularly elucidated not only various peptide receptors, including the first demonstration of the molecular entity of a G protein-coupled peptide receptor (GPCR), substance K receptor, and also diverse members of both G protein-coupled metabotropic type and NMDA type of neurotransmitter glutamate receptors. We demonstrated many novel synaptic mechanisms involving distinct types of glutamate receptors in brain function and dysfunction. These include the mechanisms underlying segregation of light-dark signals in visual transmission, discrimination and memory formation in olfactory transmission, and motor co-ordination in the cerebellum, basal ganglia and the retinal network. iubmb Life, 58: 349-357, 2006 [source] Evaluation of drug precipitation of solubility-enhancing liquid formulations using milligram quantities of a new molecular entity (NME)JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 11 2007Wei-Guo Dai Abstract A precipitation screening method using a 96-well microtiter plate was developed to evaluate in vitro drug precipitation kinetics of liquid formulations for poorly water-soluble compounds, using milligram quantities of compounds and milliliter volumes of biorelevant media. By using this method we identified three formulations showing distinct in vitro precipitation kinetics (fast, slow, and no precipitation) for a model new molecular entity (JNJ-25894934). The in vitro precipitation profiles in simulated intestinal fluid (SIF), fasted state simulated intestinal fluid (FaSSIF), and fed state simulated intestinal fluid (FeSSIF) were compared with those measured by a USP dissolution method, and with in vivo absorption at the fasted and fed states in canine pharmacokinetic (PK) studies. The precipitation kinetics of all three formulations in the initial hours measured by the screening method correlated to those determined by the USP method (R2,=,0.96). The PK results showed that the fast-precipitation formulation had the lowest bioavailability. However, a similar bioavailability was observed for the slow- and no-precipitation formulations. The oral bioavailability of JNJ-25894934 at the fed state was also significantly higher than that at the fasted state for all three formulations (p,<,0.05). In addition, the in vitro precipitation profiles in FeSSIF correlated better with in vivo absorption than those in SIF and FaSSIF. © 2007 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 96: 2957,2969, 2007 [source] WHAT MAKES A CGRP2 RECEPTOR?CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 10 2007DL Hay SUMMARY 1Heterogeneity in the receptors for the neuropeptide calcitonin gene-related peptide (CGRP) has been apparent for nearly 20 years. This is most clearly manifested in the observation of CGRP8,37 -sensitive and -insensitive populations of CGRP-activated receptors. The pA2 values for CGRP8,37 in excess of 7 are widely considered to be the result of antagonism of CGRP1 receptors, whereas those below 7 are believed to be the consequence of antagonism of a second population of receptors, namely CGRP2 receptors. 2However, a multitude of pA2 values exist for CGRP8,37, spanning several log units, and as such no obvious clusters of values are apparent. Understanding the molecular nature of the receptors that underlie this phenomenon is likely to aid the development of selective pharmacological tools to progress our understanding of the physiology of CGRP and related peptides. Because there is active development of CGRP agonists and antagonists as therapeutics, such information would also further this pursuit. 3The CGRP1 receptor is pharmacologically and molecularly well defined as a heterodimer of the calcitonin receptor-like receptor (CL) and receptor activity modifying protein (RAMP) 1. The CL/RAMP1 complex is highly sensitive to CGRP8,37. Conversely, the constituents of the CGRP2 receptor have not been identified. In fact, there is little evidence for a distinct molecular entity that represents the CGRP2 receptor. 4Recent pharmacological characterization of receptors related to CGRP1 has revealed that some of these receptors may explain CGRP2 receptor pharmacology. Specifically, AMY1(a) (calcitonin receptor/RAMP1) and AM2 (CL/RAMP3) receptors can be activated by CGRP but are relatively insensitive to CGRP8,37. 5This, along with other supporting data, suggests that the ,CGRP2 receptor' that has been extensively reported in the literature may, in fact, be an amalgamation of contributions from a variety of CGRP-activated receptors. The use of appropriate combinations of agonists and antagonists, along with receptor expression studies, could allow such receptors to be separated. [source] |