Molecular Engineering (molecular + engineering)

Distribution by Scientific Domains


Selected Abstracts


Molecular Engineering of Blue Fluorescent Molecules Based on Silicon End-Capped Diphenylaminofluorene Derivatives for Efficient Organic Light-Emitting Materials

ADVANCED FUNCTIONAL MATERIALS, Issue 8 2010
Kum Hee Lee
Abstract Blue fluorescent materials based on silicone end-capped 2-diphenylaminofluorene derivatives are synthesized and characterized. These materials are doped into a 2-methyl-9,10- di -[2-naphthyl]anthracene host as blue dopant materials in the emitting layer of organic light-emitting diode devices bearing a structure of ITO/DNTPD (60,nm)/NPB (30,nm)/emitting layer (30,nm)/Alq3 (20,nm)/LiF (1.0,nm)/Al (200,nm). All devices exhibit highly efficient blue electroluminescence with high external quantum efficiencies (3.47%,7.34% at 20,mA,cm,2). The best luminous efficiency of 11.2,cd,A,1 and highest quantum efficiency of 7.34% at 20,mA,cm,2 are obtained in a device with CIE coordinates (0.15, 0.25). A deep-blue OLED with CIE coordinates (0.15, 0.14) exhibits a luminous efficiency of 3.70,cd,A,1 and quantum efficiency of 3.47% at 20,mA,cm,2. [source]


ChemInform Abstract: Molecular Engineering of Organic Sensitizers Containing p-Phenylene Vinylene Unit for Dye-Sensitized Solar Cells.

CHEMINFORM, Issue 51 2008
Chulwoo Kim
Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a "Full Text" option. The original article is trackable via the "References" option. [source]


Molecular engineering of resveratrol in plants

PLANT BIOTECHNOLOGY JOURNAL, Issue 1 2009
Bertrand Delaunois
Summary The grapevine phytoalexin resveratrol, the synthesis of which is achieved by stilbene synthase (STS), displays a wide range of biological effects. Most interest has centred, in recent years, on STS gene transfer experiments from grapevine to the genome of numerous plants. This work presents a comprehensive review on plant molecular engineering with the STS gene. Gene and promoter options are discussed, namely the different promoters used to drive the transgene, as well as the enhancer elements and/or heterologous promoters used to improve transcriptional activity in the transformed lines. Factors modifying transgene expression and epigenetic modifications, for instance transgene copy number, are also presented. Resveratrol synthesis in plants, together with that of its glucoside as a result of STS expression, is described, as is the incidence of these compounds on plant metabolism and development. The ectopic production of resveratrol can lead to broad-spectrum resistance against fungi in transgenic lines, and to the enhancement of the antioxidant activities of several fruits, highlighting the potential role of this compound in health promotion and plant disease control. [source]


Molecular engineering of exocytic vesicle traffic enhances the productivity of Chinese hamster ovary cells

BIOTECHNOLOGY & BIOENGINEERING, Issue 4 2009
Ren-Wang Peng
Abstract A complex vesicle trafficking system manages the precise and regulated distribution of proteins, membranes and other molecular cargo between cellular compartments as well as the secretion of (heterologous) proteins in mammalian cells. Sec1/Munc18 (SM) proteins are key components of the system by regulating membrane fusion. However, it is not clear how SM proteins contribute to the overall exocytosis. Here, functional analysis of the SM protein Sly1 and Munc18c suggested a united, positive impact upon SNARE-based fusion of ER-to-Golgi- and Golgi-to-plasma membrane-addressed exocytic vesicles and increased the secretory capacity of different therapeutic proteins in Chinese hamster ovary cells up to 40 pg/cell/day. Sly1- and Munc18c-based vesicle traffic engineering cooperated with Xbp-1-mediated ER/Golgi organelle engineering. Our study supports a model for united function of SM proteins in stimulating vesicle trafficking machinery and provides a generic secretion engineering strategy to improve biopharmaceutical manufacturing of important protein therapeutics. Biotechnol. Bioeng. 2009;102: 1170-1181. © 2008 Wiley Periodicals, Inc. [source]


Stabilization of invertase by molecular engineering

BIOTECHNOLOGY PROGRESS, Issue 1 2010
Pattamawadee Tananchai
Abstract Extracellular invertase (EC 3.2.1.26) of Saccharomyces cerevisiae was stabilized against thermal denaturation by intermolecular and intramolecular crosslinking of the surface nucleophilic functional groups with diisocyanate homobifunctional reagents (OCN(CH2)nNCO) of various lengths (n = 4, 6, 8). Crosslinking with 1,4-diisocyanatobutane (n = 4) proved most effective in enhancing thermostability. Stability was improved dramatically by crosslinking 0.5 mg/mL of protein with 30 ,mol/mL of the reagent. Molecular engineering by crosslinking reduced the first-order thermal denaturation constant at 60°C from 1.567 min,1 (for the native enzyme) to 0.437 min,1 (for the stabilized enzyme). Similarly, the best crosslinking treatment increased the activation energy for denaturation from 391 kJ mol,1 (for the native protein) to 466 kJ mol,1 (for the stabilized enzyme). Crosslinking was confirmed by sodium dodecyl sulfate polyacrylamide gel electrophoresis. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010 [source]


Mechanism of substrate inhibition in cellulose synergistic degradation

FEBS JOURNAL, Issue 16 2001
Priit Väljamäe
,A comprehensive experimental study of substrate inhibition in cellulose hydrolysis based on a well defined system is presented. The hydrolysis of bacterial cellulose by synergistically operating binary mixtures of cellobiohydrolase I from Trichoderma reesei and five different endoglucanases as well as their catalytic domains displays a characteristic substrate inhibition. This inhibition phenomenon is shown to require the two-domain structure of an intact cellobiohydrolase. The experimental data were in accordance with a mechanism where cellobiohydrolases previously bound to the cellulose by means of their cellulose binding domains are able to find chain ends by lateral diffusion. An increased substrate concentration at a fixed enzyme load will also increase the average diffusion distance/time needed for cellobiohydrolases to reach new chain ends created by endoglucanases, resulting in an apparent substrate inhibition of the synergistic action. The connection between the binding properties and the substrate inhibition is encouraging with respect to molecular engineering of the binding domain for optimal performance in biotechnological processes. [source]


A Versatile, Molecular Engineering Approach to Simultaneously Enhanced, Multifunctional Carbon-Nanotube, Polymer Composites,

ADVANCED FUNCTIONAL MATERIALS, Issue 1 2006
J. Chen
Abstract Single-walled carbon nanotubes (SWNTs) are recognized as the ultimate carbon fibers for high-performance, multifunctional composites. The remarkable multifunctional properties of pristine SWNTs have proven, however, difficult to harness simultaneously in polymer composites, a problem that arises largely because of the smooth surface of the carbon nanotubes (i.e., sidewalls), which is incompatible with most solvents and polymers, and leads to a poor dispersion of SWNTs in polymer matrices, and weak SWNT,polymer adhesion. Although covalently functionalized carbon nanotubes are excellent reinforcements for mechanically strong composites, they are usually less attractive fillers for multifunctional composites, because the covalent functionalization of nanotube sidewalls can considerably alter, or even destroy, the nanotubes' desirable intrinsic properties. We report for the first time that the molecular engineering of the interface between non-covalently functionalized SWNTs and the surrounding polymer matrix is crucial for achieving the dramatic and simultaneous enhancement in mechanical and electrical properties of SWNT,polymer composites. We demonstrate that the molecularly designed interface of SWNT,matrix polymer leads to multifunctional SWNT,polymer composite films stronger than pure aluminum, but with only half the density of aluminum, while concurrently providing electroconductivity and room-temperature solution processability. [source]


Ultrathin polymeric interpenetration network with separation performance approaching ceramic membranes for biofuel

AICHE JOURNAL, Issue 1 2009
Lan Ying Jiang
Abstract Biofuel has emerged as one of the most strategically important sustainable fuel sources. The success of biofuel development is not only dependent on the advances in genetic transformation of biomass into biofuel, but also on the breakthroughs in separation of biofuel from biomass. The "separation" alone currently accounts for 60,80% of the biofuel production cost. Ceramic membranes made of sophisticated processes have shown separation performance far superior to polymeric membranes, but suffers fragility and high fabrication cost. We report the discovery of novel molecular engineering and membrane fabrication that can synergistically produce polymeric membranes exhibiting separation performance approaching ceramic membranes. The newly discovered Polysulfone/Matrimid composite membranes are fabricated by dual-layer coextrusion technology in just one step through phase inversion. An ultrathin dense-selective layer made of an interpenetration network of the two materials with a targeted and stable interstitial space is formed at the interface of two layers for biofuel separation. The combined molecular engineering and membrane fabrication approach may revolutionize future membrane research and development for purification and separation in energy, environment, and pharmaceuticals. © 2008 American Institute of Chemical Engineers AIChE J, 2009 [source]


Mitochondria and calcium homeostasis: a tale of three luminescent proteins

LUMINESCENCE: THE JOURNAL OF BIOLOGICAL AND CHEMICAL LUMINESCENCE, Issue 2 2001
Paulo J. Magalhćes
Abstract In recent years the jellyfish Aequorea victoria has provided the scientific community with a pair of tools of exceptional usefulness: aequorin and the green fluorescent protein (GFP). Whereas the former has played a major role in the study of calcium signalling, the latter has sparked the imagination of researchers into a myriad of elegant experiments. The firefly Photinus pyralis has also been of great use, providing a third luminescent protein, luciferase, which is mostly known for its role as a reporter protein. Concurrent use of these three proteins provides a powerful means of elucidating biological processes with fine spatio-temporal detail. Here we will illustrate how specific molecular engineering of these three proteins provided a set of biological tools capable of generating important data in the field of calcium homeostasis. First, we will show how the use of specifically targeted aequorin chimeras enabled the measurement of regional Ca2+ concentrations; second, how the use of GFP (and derived chromatic mutants) permitted detailed morphological analyses in living cells; third, how luciferase was used to analyse energetic requirements at the subcellular level. Together, these three experimental approaches have provided important details on how mitochondria participate actively in calcium homeostasis. A final note regarding clinical implications demonstrates the practical usefulness of the data obtained. Copyright © 2001 John Wiley & Sons, Ltd. [source]


Molecular engineering of resveratrol in plants

PLANT BIOTECHNOLOGY JOURNAL, Issue 1 2009
Bertrand Delaunois
Summary The grapevine phytoalexin resveratrol, the synthesis of which is achieved by stilbene synthase (STS), displays a wide range of biological effects. Most interest has centred, in recent years, on STS gene transfer experiments from grapevine to the genome of numerous plants. This work presents a comprehensive review on plant molecular engineering with the STS gene. Gene and promoter options are discussed, namely the different promoters used to drive the transgene, as well as the enhancer elements and/or heterologous promoters used to improve transcriptional activity in the transformed lines. Factors modifying transgene expression and epigenetic modifications, for instance transgene copy number, are also presented. Resveratrol synthesis in plants, together with that of its glucoside as a result of STS expression, is described, as is the incidence of these compounds on plant metabolism and development. The ectopic production of resveratrol can lead to broad-spectrum resistance against fungi in transgenic lines, and to the enhancement of the antioxidant activities of several fruits, highlighting the potential role of this compound in health promotion and plant disease control. [source]


Increased cysteine availability is essential for cadmium tolerance and accumulation in Arabidopsis thaliana

PLANT BIOTECHNOLOGY JOURNAL, Issue 6 2004
José R. Domķnguez-Solķs
Summary Employing genetic transformation using an Atcys-3A cDNA construct expressing the cytosolic O -acetylserine(thiol)lyase (OASTL), we obtained two Arabidopsis lines with different capabilities for supplying cysteine under metal stress conditions. Lines 1-2 and 10-10, grown under standard conditions, showed similar levels of cysteine and glutathione (GSH) to those of the wild-type. However, in the presence of cadmium, line 10-10 showed significantly higher levels. The increased thiol content allowed line 10-10 to survive under severe heavy metal stress conditions (up to 400 µm of cadmium in the growth medium), and resulted in an accumulation of cadmium in the leaves to a level similar to that of metal hyperaccumulator plants. Investigation of the epidermal leaf surface clearly showed that most of the cadmium had accumulated in the trichomes. Furthermore, line 10-10 was able to accumulate more cadmium in its trichomes than the wild-type, whereas line 1-2 showed a reduced capacity for cadmium accumulation. Our results suggest that an increased rate of cysteine biosynthesis is responsible for the enhanced cadmium tolerance and accumulation in trichome leaves. Thus, molecular engineering of the cysteine biosynthesis pathway, together with modification of the number of leaf trichomes, may have considerable potential in increasing heavy metal accumulation for phytoremediation purposes. [source]


Ternary single-source precursors for polycrystalline thin-film solar cells

APPLIED ORGANOMETALLIC CHEMISTRY, Issue 11 2002
Kulbinder K. Banger
The development of thin-film solar cells on flexible, lightweight, space-qualified substrates provides an attractive cost solution for fabricating solar arrays with high specific power (W kg,1). The use of a polycrystalline chalcopyrite absorber layer for thin-film solar cells is considered as the next generation in photovoltaic devices. At NASA GRC we have focused on the development of new single-source precursors (SSPs) and their utility to deposit the chalcopyrite semiconducting layer (CIS) onto flexible substrates for solar-cell fabrication. The syntheses and thermal modulation of SSPs via molecular engineering are described. Thin-film fabrication studies demonstrate that the SSPs can be used in a spray chemical vapor deposition process for depositing CIS at reduced temperatures, and result in electrical properties that are suitable for photovoltaic devices. Copyright © 2002 John Wiley & Sons, Ltd. [source]


Exploring the interplay of stability and function in protein evolution

BIOESSAYS, Issue 8 2010
New methods further elucidate why protein stability is necessarily so tenuous, stability-increasing mutations compromise biological function.
Abstract A new split ,-lactamase assay promises experimental testing of the interplay of protein stability and function. Proteins are sufficiently stable to act effectively within cells. However, mutations generally destabilize structure, with effects on free energy that are comparable to the free energy of folding. Assays of protein functionality and stability in vivo enable a quick study of factors that influence these properties in response to targeted mutations. These assays can help molecular engineering but can also be used to target important questions, including why most proteins are marginally stable, how mutations alter structural makeup, and how thermodynamics, function, and environment shape molecular change. Processes of self-organization and natural selection are determinants of stability and function. Non-equilibrium thermodynamics provides crucial concepts, e.g., cells as emergent energy-dissipating entities that do work and build their own parts, and a framework to study the sculpting role of evolution at different scales. [source]


Stabilization of invertase by molecular engineering

BIOTECHNOLOGY PROGRESS, Issue 1 2010
Pattamawadee Tananchai
Abstract Extracellular invertase (EC 3.2.1.26) of Saccharomyces cerevisiae was stabilized against thermal denaturation by intermolecular and intramolecular crosslinking of the surface nucleophilic functional groups with diisocyanate homobifunctional reagents (OCN(CH2)nNCO) of various lengths (n = 4, 6, 8). Crosslinking with 1,4-diisocyanatobutane (n = 4) proved most effective in enhancing thermostability. Stability was improved dramatically by crosslinking 0.5 mg/mL of protein with 30 ,mol/mL of the reagent. Molecular engineering by crosslinking reduced the first-order thermal denaturation constant at 60°C from 1.567 min,1 (for the native enzyme) to 0.437 min,1 (for the stabilized enzyme). Similarly, the best crosslinking treatment increased the activation energy for denaturation from 391 kJ mol,1 (for the native protein) to 466 kJ mol,1 (for the stabilized enzyme). Crosslinking was confirmed by sodium dodecyl sulfate polyacrylamide gel electrophoresis. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010 [source]