Home About us Contact | |||
Molecular Alterations (molecular + alteration)
Selected AbstractsAdvanced colorectal polyps with the molecular and morphological features of serrated polyps and adenomas: concept of a ,fusion' pathway to colorectal cancerHISTOPATHOLOGY, Issue 2 2006J R Jass Aim :,To establish and explain the pattern of molecular signatures across colorectal polyps. Methods and results :,Thirty-two sessile serrated adenomas (SSA), 10 mixed polyps (MP), 15 traditional serrated adenomas (SA), 49 hyperplastic polyps (HP) and 84 adenomas were assessed for mutation of KRAS and BRAF and aberrant expression of p53. The findings were correlated with loss of expression of O-6-methylguanine DNA methyltransferase (MGMT). KRAS mutation occurred more frequently (26.5%) than BRAF mutation (4.8%) in adenomas (P < 0.001) and particularly in adenomas with villous architecture (50%). Loss of expression of MGMT correlated with KRAS mutation in small tubular adenomas (P < 0.04). BRAF mutation was frequent in HPs (67%) and SSAs (81%), while KRAS mutation was infrequent (4% and 3%, respectively). Of MPs and SAs, 72% had either BRAF or KRAS mutation. Aberrant expression of p53 was uncommon overall, but occurred more frequently in MPs and SAs (12%) than adenomas (1%) (P < 0.04) and there was concordant loss of expression of MGMT. Conclusions :,Molecular alterations that are characteristic of the serrated pathway and adenoma,carcinoma sequence can co-occur in a minority of advanced colorectal polyps that then show morphological features of both pathways. These lesions account for only 2% of colorectal polyps, but may be relatively aggressive. [source] Molecular alterations resulting from frameshift mutations in peripheral myelin protein 22: Implications for neuropathy severityJOURNAL OF NEUROSCIENCE RESEARCH, Issue 6 2005J.S. Johnson Abstract Alterations in peripheral myelin protein 22 (PMP22) expression are associated with a heterogeneous group of hereditary demyelinating peripheral neuropathies. Two mutations at glycine 94, a single guanine insertion or deletion in PMP22, result in different reading frameshifts and, consequently, an extended G94fsX222 or a truncated G94fsX110 protein, respectively. Both of these autosomal dominant mutations alter the second half of PMP22 and yet are linked to clinical phenotypes with distinct severities. The G94fsX222 is associated with hereditary neuropathy with liability to pressure palsies, whereas G94fsX110 causes severe neuropathy diagnosed as Dejerine-Sottas disease or Charcot-Marie-Tooth disease type IA. To investigate the subcellular changes associated with the G94 frameshift mutations, we expressed epitope-tagged forms in primary rat Schwann cells. Biochemical and immunolabeling studies indicate that, unlike the wild-type protein, which is targeted for the plasma membrane, frameshift PMP22s are retained in the cell, prior to reaching the medial Golgi compartment. Similar to Wt-PMP22, both frameshift mutants are targeted for proteasomal degradation and accumulate in detergent-insoluble, ubiquitin-containing aggregates upon inhibition of this pathway. The extended frameshift PMP22 shows the ability to form spontaneous aggregates in the absence of proteasome inhibition. On the other hand, Schwann cells expressing the truncated protein proliferate at a significantly higher rate than Schwann cells expressing the wild-type or the extended PMP22. In summary, these results suggest that a greater potential for PMP22 aggregation is associated with a less severe phenotype, whereas dysregulation of Schwann cell proliferation is linked to severe neuropathy. © 2005 Wiley-Liss, Inc. [source] Differences in molecular alterations of hepatocellular carcinoma between patients with a sustained virological response and those with hepatitis C virus infectionLIVER INTERNATIONAL, Issue 1 2009Takehiro Hayashi Abstract Background/Aims: The mechanism of hepatocarcinogenesis remains unclear in patients in whom hepatitis C virus (HCV) disappears after interferon (IFN) therapy. We compared molecular alterations in hepatocellular carcinoma (HCC) between patients with a sustained virological response (SVR) to IFN and patients with HCV. Methods: The study group comprised 44 patients with HCV and 13 patients with SVR. One patient in the SVR group had two tumour nodules, both of which were examined. Mitochondrial DNA (mtDNA) mutations in displacement-loop lesions were directly sequenced. Mutation of the TP53 gene was examined by direct sequencing. The methylation status of p16, p15, p14, RB and PTEN genes was evaluated by a methylation-specific polymerase chain reaction. Results: The average number of mtDNA mutations was 4.2 in 44 HCCs with HCV and 2.0 in 14 HCCs with SVR (P=0.0021). mtDNA mutation was less frequently detected in HCCs from patients with SVR than in patients with HCV. TP53 mutations were detected in 12 (27%) of 44 HCCs with HCV and 2 (14%) of 14 SVR-HCCs. Hypermethylation of the p16, p15, p14, RB and PTEN promoters was, respectively, detected in 34, 13, 8, 12 and 11 of 44 HCCs from patients with HCV and 14, 0, 0, 2 and 2 of 14 HCCs from patients with SVR (P=0.049, 0.021, 0.085, 0.322 and 0.402). Hypermethylation of p16 was one of the most important alterations in SVR-HCC. Conclusions: Molecular alterations in hepatocarcinogenesis of patients with SVR-HCC were different from those of patients with continuous HCV infection. [source] GOLPH2 and MYO6: Putative prostate cancer markers localized to the Golgi apparatusTHE PROSTATE, Issue 13 2008Shuanzeng Wei Abstract BACKGROUND Malignant transformation is often accompanied by morphological and functional alterations in subcellular organelles. The Golgi apparatus is a subcellular structure primarily involved in modification and sorting of macromolecules for secretion and transport to other cellular destinations. Molecular alterations associated with the Golgi apparatus may take place during prostate carcinogenesis but such alterations have not been documented. METHODS To demonstrate that the Golgi apparatus undergoes alterations during prostate carcinogenesis, we examined the expression and localization of two candidate molecules, Golgi phosphoprotein 2 (GOLPH2) and myosin VI (MYO6), both overexpressed in prostate cancer as initially identified by expression microarray analysis. RESULTS Elevated GOLPH2 expression in prostate cancers was validated through real-time RT-PCR, Western blot, and tissue microarray analysis, and its Golgi localization in surgical prostate cancer tissues confirmed using two-color immunofluorescence. In addition, distinctive juxtanuclear MYO6 staining pattern consistent with Golgi localization was observed in surgical prostate cancer tissues. Two-color immunofluorescence revealed intensive Golgi-specific staining for both GOLPH2 and myosin VI in prostate cancer cells but not in the adjacent normal prostate epithelium. CONCLUSIONS We show that the Golgi apparatus in prostate cancer cells differs from the normal Golgi by elevated levels of two molecules, GOLPH2 and MYO6. These results for the first time demonstrated consistent cancer cell-specific alterations in the molecular composition of the Golgi apparatus. Such alterations can be explored for discovery of novel prostate cancer biomarkers through targeted organellar approaches. Prostate 68: 1387,1395, 2008. © 2008 Wiley-Liss, Inc. [source] Gene expression profiling during rat mammary carcinogenesis induced by 7,12-dimethylbenz[a]anthraceneINTERNATIONAL JOURNAL OF CANCER, Issue 6 2009Masakazu Souda Abstract 7,12-Dimethylbenz[a]anthracene (DMBA)-induced rat mammary carcinoma is a well-recognized model; however, the genetic alterations during its carcinogenesis have yet to be determined. We used laser capture microdissection to specifically isolate cells from terminal end buds (TEBs), the origin of carcinoma, at 2 weeks after sesame oil treatment (control) or DMBA treatment (DMBA-TEBs), ductal carcinoma in situ (DCIS) and invasive mammary carcinoma (MC). Using an oligonucleotide microarray representing 20,600 rat probe sequences, we analyzed gene expression profiles and validated mRNA and protein levels of genes of interest byreal-time quantitative PCR and immunohistochemistry. The number of differentially expressed genes dramatically increased from DMBA-TEBs (63) to DCIS (798) and MC (981). Only the expression of PEP-19, an anti-apoptotic gene, showed significant increases in DMBA-TEBs (4-fold), DCIS (10-fold) and MC (16-fold). MMP-13 expression was increased markedly in DCIS (19-fold) and MC (61-fold) while OPN expression was increased 6-fold in DCIS and 8-fold in MC. MMP-7 expression was increased 4-fold in MC. Nidogen-1; a participant in the assembly of basement membranes, TSP-2; an inhibitor of angiogenesis and COUP-TFI; a transcription repressor showed significant decreases in DCIS (4-, 9- and 17-fold, respectively) and MC (10-, 37- and 100-fold). Network analyses with IPA software revealed that the most significant network included Akt groups in DCIS and ERK groups in MC. The present findings provide us with a better understanding of the molecular alteration that occur during mammary carcinogenesis and suggest the importance of PEP-19 overexpression in the very early stage of mammary carcinogenesis. © 2009 UICC [source] Morphological features of TMPRSS2,ERG gene fusion prostate cancer,THE JOURNAL OF PATHOLOGY, Issue 1 2007J-M Mosquera Abstract The TMPRSS2,ETS fusion prostate cancers comprise 50,70% of the prostate-specific antigen (PSA)-screened hospital-based prostate cancers examined to date, making it perhaps the most common genetic rearrangement in human cancer. The most common variant involves androgen-regulated TMPRSS2 and ERG, both located on chromosome 21. Emerging data from our group and others suggests that TMPRSS2,ERG fusion prostate cancer is associated with higher tumour stage and prostate cancer-specific death. The goal of this study was to determine if this common somatic alteration is associated with a morphological phenotype. We assessed 253 prostate cancer cases for TMPRSS2,ERG fusion status using an ERG break-apart FISH assay. Blinded to gene fusion status, two reviewers assessed each tumour for presence or absence of eight morphological features. Statistical analysis was performed to look for significant associations between morphological features and TMPRSS2,ERG fusion status. Five morphological features were associated with TMPRSS2,ERG fusion prostate cancer: blue-tinged mucin, cribriform growth pattern, macronucleoli, intraductal tumour spread, and signet-ring cell features, all with p -values < 0.05. Only 24% (n = 30/125) of tumours without any of these features displayed the TMPRSS2,ERG fusion. By comparison, 55% (n = 38/69) of cases with one feature (RR = 3.88), 86% (n = 38/44) of cases with two features (RR = 20.06), and 93% (n = 14/15) of cases with three or more features (RR = 44.33) were fusion positive (p < 0.001). To our knowledge, this is the first study that demonstrates a significant link between a molecular alteration in prostate cancer and distinct phenotypic features. The strength of these findings is similar to microsatellite unstable colon cancer and breast cancer involving BRCA1 and BRCA2 mutations. The biological effect of TMPRSS2,ERG overexpression may drive pathways that favour these common morphological features that pathologists observe daily. These features may also be helpful in diagnosing TMPRSS2,ERG fusion prostate cancer, which may have both prognostic and therapeutic implications. Copyright © 2007 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. [source] High frequency of ,-catenin mutations in borderline endometrioid tumours of the ovaryTHE JOURNAL OF PATHOLOGY, Issue 5 2006E Oliva Abstract Some low-grade endometrioid carcinomas arise from a background of endometrioid tumours of borderline malignancy. To determine the molecular mechanisms involved in the initiation of endometrioid carcinoma, the present study investigated whether the genetic alterations reported in these tumours (mutations in PTEN, KRAS, and ,-catenin genes, and microsatellite instability) are already present in endometrioid tumours of borderline malignancy. Eight endometrioid tumours of borderline malignancy were studied. By immunohistochemistry, ,-catenin was expressed in the nuclei of all tumours, suggesting the presence of stabilizing ,-catenin mutations. By mutational analysis, five different ,-catenin mutations were found in seven of eight cases (90%), affecting codons 32, 33, and 37. In contrast, only one tumour harboured a PTEN mutation, which affected codon 130. Neither KRAS mutations nor microsatellite instability was detected. A review of the literature indicated that ,-catenin mutations are characteristic of well-differentiated endometrioid carcinomas, since they were present in nearly 60% of grade I but in less of 3% of grade III tumours. In conclusion, the present study identifies ,-catenin mutation as a nearly constant molecular alteration in borderline endometrioid tumours, whereas PTEN and KRAS mutations and microsatellite instability are very infrequent. The findings in the present study, and previously reported data, strongly suggest that ,-catenin mutation is an early event in endometrioid ovarian carcinogenesis, and that it is involved in the development of low-grade endometrioid tumours. Copyright © 2006 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. [source] Developmental toxicity of estrogenic chemicals on rodents and other speciesCONGENITAL ANOMALIES, Issue 2 2002Taisen Iguchi ABSTRACT, Antenatal sex-hormone exposure induces lesions in mouse reproductive organs, which are similar to those in humans exposed in utero to a synthetic estrogen, diethylstilbestrol. The developing organisms including rodents, fish and amphibians are particularly sensitive to exposure to estrogenic chemicals during a critical window. Exposure to estrogens during the critical period induces long-term changes in reproductive as well as non-reproductive organs, including persistent molecular alterations. The antenatal mouse model can be utilized as an indicator of possible long-term consequences of exposure to exogenous estrogenic compounds including possible environmental endocrine disrupters. Many chemicals released into the environment potentially disrupt the endocrine system in wildlife and humans, some of which exhibit estrogenic activity by binding to the estrogen receptors. Estrogen responsive genes, therefore, need to be identified to understand the molecular basis of estrogenic actions. In order to understand molecular mechanisms of estrogenic chemicals on developing organisms, we are identifying estrogen responsive genes using cDNA microarray, quantitative RT-PCR, and differential display methods, and genes related to the estrogen-independent vaginal changes in mice induced by estrogens during the critical window. In this review, discussion of our own findings related to endocrine distuptor issue will be provided. [source] Vascular endothelial growth factor and diabetic retinopathy: pathophysiological mechanisms and treatment perspectivesDIABETES/METABOLISM: RESEARCH AND REVIEWS, Issue 6 2003Ruth B. Caldwell Abstract Retinal neovascularization and macular edema are central features of diabetic retinopathy, the major cause of blindness in the developed world. Current treatments are limited in their efficacy and are associated with significant adverse effects. Characterization of the molecular and cellular processes involved in vascular growth and permeability has led to the recognition that the angiogenic growth factor and vascular permeability factor vascular endothelial growth factor (VEGF) plays a pivotal role in the retinal microvascular complications of diabetes. Therefore, VEGF represents an exciting target for therapeutic intervention in diabetic retinopathy. This review highlights the current understanding of the mechanisms that regulate VEGF gene expression and mediate its biological effects and how these processes may become altered during diabetes. The cellular and molecular alterations that characterize experimental models of diabetes are considered in relation to the influence of high glucose-mediated oxidative stress on VEGF expression and on the mechanisms of VEGF's actions under hyperglycemic induction. Finally, potential therapeutic strategies for preventing VEGF overexpression or blocking its pathological effects in the diabetic retina are considered. Copyright © 2003 John Wiley & Sons, Ltd. [source] Induction of G2/M phase arrest and apoptosis by a novel indoloquinoline derivative, IQDMA, in K562 cellsDRUG DEVELOPMENT RESEARCH, Issue 9 2006Yi-Hsiung Lin Abstract The indoloquinoline, IQDMA (N,-(11H-indolo[3,2-c]quinolin-6-yl)-N,N-dimethylethane-1,2-diamine), was identified as a novel antineoplastic agent with broad spectrum of antitumor activities against several human cancer cells. IQDMA-induced G2/M arrest was accompanied by up-regulation of the cyclin-dependent kinase inhibitors (CDKIs), p21 and p27, and down-regulation of Cdk1and Cdk2. IQDMA had no effect on the levels of cyclin A, cyclin B1, cyclin D3, or Cdc25C. IQDMA also increased apoptosis, as characterized by apoptotic body formation, increase of the sub G1 population and poly (ADP-ribose) polymerase (PARP) cleavage. Further mechanistic analysis demonstrated that IQDMA upregulated FasL protein expression, and kinetic studies showed the sequential activation of caspases-8, -3, and -9. Both caspase-8 and caspase-3 inhibitors, but not a caspase-9-specific inhibitor, suppressed IQDMA-induced cell death. These molecular alterations provide an insight into IQDMA-caused growth inhibition, G2/M arrest, and apoptotic death of K562 cells. Drug Dev. Res. 67:743,751, 2006. © 2006 Wiley-Liss, Inc. [source] Molecular Neuropathology of Temporal Lobe Epilepsy: Complementary Approaches in Animal Models and Human Disease TissueEPILEPSIA, Issue 2007Michael Majores Summary:, Patients with temporal lobe epilepsies (TLE) frequently develop pharmacoresistance to antiepileptic treatment. In individuals with drug-refractory TLE, neurosurgical removal of the epileptogenic focus provides a therapy option with high potential for seizure control. Biopsy specimens from TLE patients constitute unique tissue resources to gain insights in neuropathological and molecular alterations involved in human TLE. Compared to human tissue specimens in most neurological diseases, where only autopsy material is available, the bioptic tissue samples from pharmacoresistant TLE patients open rather exceptional preconditions for molecular biological, electrophysiological as well as biochemical experimental approaches in human brain tissue, which cannot be carried out in postmortem material. Pathological changes in human TLE tissue are multiple and relate to structural and cellular reorganization of the hippocampal formation, selective neurodegeneration, and acquired changes of expression and distribution of neurotransmitter receptors and ion channels, underlying modified neuronal excitability. Nevertheless, human TLE tissue specimens have some limitations. For obvious reasons, human TLE tissue samples are only available from advanced, drug-resistant stages of the disease. However, in many patients, a transient episode of status epilepticus (SE) or febrile seizures in childhood can induce multiple structural and functional alterations that after a latency period result in a chronic epileptic condition. This latency period, also referred to as epileptogenesis, cannot be studied in human TLE specimens. TLE animal models may be particularly helpful in order to shed characterize new molecular pathomechanisms related to epileptogenesis and open novel therapeutic strategies for TLE. Here, we will discuss experimental approaches to unravel molecular,neuropathological aspects of TLE and highlight characteristics and potential of molecular studies in human and/or experimental TLE. [source] Molecular genetics of Xeroderma pigmentosum variantEXPERIMENTAL DERMATOLOGY, Issue 5 2003Alexei Gratchev Skin abnormalities result from an inability to repair UV-damaged DNA because of defects in the nucleotide excision repair (NER) machinery. Xeroderma pigmentosum is genetically heterogeneous and is classified into seven complementation groups (XPA-XPG) that correspond to genetic alterations in one of seven genes involved in NER. The variant type of XP (XPV), first described in 1970 by Ernst G. Jung as ,pigmented xerodermoid', is caused by defects in the post replication repair machinery while NER is not impaired. Identification of the XPV gene was only achieved in 1999 by biochemical purification and sequencing of a protein from HeLa cell extracts complementing the PRR defect in XPV cells. The XPV protein, polymerase (pol),, represents a novel member of the Y family of bypass DNA polymerases that facilitate DNA translesion synthesis. The major function of pol, is to allow DNA translesion synthesis of UV-induced TT-dimers in an error-free manner; it also possesses the capability to bypass other DNA lesions in an error-prone manner. Xeroderma pigmentosum V is caused by molecular alterations in the POLH gene, located on chromosome 6p21.1,6p12. Affected individuals are homozygous or compound heterozygous for a spectrum of genetic lesions, including nonsense mutations, deletions or insertions, confirming the autosomal recessive nature of the condition. Identification of POLH as the XPV gene provides an important instrument for improving molecular diagnostics in XPV families. [source] Functional changes in astroglial cells in epilepsyGLIA, Issue 5 2006Devin K. Binder Abstract Epilepsy comprises a group of disorders characterized by the periodic occurrence of seizures, and pathologic specimens from patients with temporal lobe epilepsy demonstrate marked reactive gliosis. Since recent studies have implicated glial cells in novel physiological roles in the CNS, such as modulation of synaptic transmission, it is plausible that glial cells may have a functional role in the hyperexcitability characteristic of epilepsy. Indeed, alterations in distinct astrocyte membrane channels, receptors and transporters have all been associated with the epileptic state. This review integrates the current evidence regarding astroglial dysfunction in epilepsy and the potential underlying mechanisms of hyperexcitability. Functional understanding of the cellular and molecular alterations of astroglia-dependent hyperexcitability will help to clarify the physiological role of astrocytes in neural function as well as lead to the identification of novel therapeutic targets. © 2006 Wiley-Liss, Inc. [source] Integrative molecular characterization of head and neck cancer cell model genomesHEAD & NECK: JOURNAL FOR THE SCIENCES & SPECIALTIES OF THE HEAD AND NECK, Issue 9 2010Ivy F. L. Tsui BSc Abstract Background. Cell lines are invaluable model systems for the investigation of cancer. Knowledge of the molecular alterations that exist within cell models is required to define the mechanisms governing cellular phenotypes. Methods. Five tongue squamous cell carcinomas cell lines and 1 submaxillary salivary gland epidermoid carcinoma cell line were analyzed for copy number and mRNA expression by tiling-path DNA microarrays and Agilent Whole Human Genome Oligoarrays, respectively. Results. Integrative analysis of genetic and expression alterations revealed the molecular landscape of each cell line. Molecular results for individual cell lines and across all samples have been summarized and made available for easy reference. Conclusion. Our integrative genomic analyses have defined the DNA and RNA alterations for each individual line. These data will be useful to anyone modeling oral cancer behavior, providing a molecular context that will be useful for deciphering cell phenotypes. © 2009 Wiley Periodicals, Inc. Head Neck, 2010 [source] p63 in prostate biology and pathologyJOURNAL OF CELLULAR BIOCHEMISTRY, Issue 5 2008Chiara Grisanzio Abstract The identification of stem cells and differentiation programs regulating the development and maintenance of the normal prostate epithelium is essential for the identification of the cell type(s) and molecular alterations involved in the development and propagation of prostate cancer (CaP). The p53-homologue p63 is highly expressed in normal prostate basal cells and is a clinically useful biomarker for the diagnosis of CaP. Importantly, p63 has been shown to play a critical role in prostate development. Recent experimental evidence also suggests that this gene is essential for normal stem cell function in the prostate as well as other epithelial organs. Future studies aimed at better defining the role of p63 in the renewal of the adult prostate epithelium are likely to shed new light on the mechanisms involved in prostate carcinogenesis. J. Cell. Biochem. 103: 1354,1368, 2008. © 2007 Wiley-Liss, Inc. [source] Differential expression of proteins in kidney, eye, aorta, and serum of diabetic and non-diabetic ratsJOURNAL OF CELLULAR BIOCHEMISTRY, Issue 1 2006William C. Cho Abstract Diabetes mellitus (DM) is a chronic progressive disease that often results in microvascular and macrovascular complications, yet its pathogenesis is not clear. Automated proteomic technology, coupled with powerful bioinformatics and statistical tools, can provide new insights into the molecular alterations implicated in DM. Following our previous findings of redox changes in the eye and aorta of diabetic rats, as well as the activities of different antioxidant enzymes during the development of DM, this study is further launched to find potential biomarkers by comparing the serum and tissue samples of 26 diabetic rats (8 weeks after streptozotocin [STZ] administration) with 29 normal controls using surface enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS) technology. Eight potential biomarkers were found in the serum, one potential biomarker was found in the kidney and eye, respectively, whereas three potential biomarkers were discovered in the aorta. One of the serum biomarker candidates was found to match the C-reactive protein (CRP) in the Swiss-Prot knowledgebase. Further validation has been conducted by ELISA kit to confirm the role of CRP during the development of DM. To conclude, the increased level of CRP in diabetic serum demonstrated in this study indicates that the development of DM is associated with inflammation. This is also the first report demonstrating that some potential lysate biomarkers in the kidney, eye, and aorta may be involved in the development of diabetes and its complications. Further identification and evaluation of these potential biomarkers will help unravel the underlying mechanisms of the disease. J. Cell. Biochem. © 2006 Wiley-Liss, Inc. [source] Biomolecular characterization of human glioblastoma cells in primary cultures: Differentiating and antiangiogenic effects of natural and synthetic PPAR, agonistsJOURNAL OF CELLULAR PHYSIOLOGY, Issue 1 2008E. Benedetti Gliomas are the most commonly diagnosed malignant brain primary tumors. Prognosis of patients with high-grade gliomas is poor and scarcely affected by radiotherapy and chemotherapy. Several studies have reported antiproliferative and/or differentiating activities of some lipophylic molecules on glioblastoma cells. Some of these activities in cell signaling are mediated by a class of transcriptional factors referred to as peroxisome proliferator-activated receptors (PPARs). PPAR, has been identified in transformed neural cells of human origin and it has been demonstrated that PPAR, agonists decrease cell proliferation, stimulate apoptosis and induce morphological changes and expression of markers typical of a more differentiated phenotype in glioblastoma and astrocytoma cell lines. These findings arise from studies mainly performed on long-term cultured transformed cell lines. Such experimental models do not exactly reproduce the in vivo environment since long-term culture often results in the accumulation of further molecular alterations in the cells. To be as close as possible to the in vivo condition, in the present work we investigated the effects of PPAR, natural and synthetic ligands on the biomolecular features of primary cultures of human glioblastoma cells derived from surgical specimens. We provide evidence that PPAR, agonists may interfere with glioblastoma growth and malignancy and might be taken in account as novel antitumoral drugs. J. Cell. Physiol. 217: 93,102, 2008. © 2008 Wiley-Liss, Inc. [source] Effect of losartan on early liver fibrosis development in a rat model of nonalcoholic steatohepatitisJOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY, Issue 6 2007Patricio Ibañez Abstract Background and Aim:, Nonalcoholic steatohepatitis (NASH) is a metabolic disorder of the liver that may evolve into fibrosis or cirrhosis. Recent studies have shown reduction of experimental liver fibrosis with the use of angiotensin-converting-enzyme inhibitors or angiotensin-receptor antagonists. The aim of this study was to determine whether losartan can influence the early phase of fibrogenesis in an animal model of NASH. Methods:, To induce NASH, a choline-deficient diet (CDD) was given to Sprague-Dawley rats for 12 weeks. These animals were then compared with a control group receiving choline-supplemented diet (CSD) and a group fed a CDD plus losartan (10 mg/kg/day). Biochemical (serum levels of alanine aminotransferase and aspartate aminotransferase) and histological evaluation of fatty liver was performed by conventional techniques. Hydroxyproline content in liver tissue was assayed by spectrophotometry. In addition, mRNA levels of procollagen I and transforming growth factor (TGF)-, were assessed by semiquantitative RT-PCR and stellate cell activation by ,-actin immunofluorescence stain. Results:, After 12 weeks CDD induced a marked elevation of serum aminotranferases, a severe fatty liver infiltration with mild histological inflammation and fibrosis. These findings correlated with a significant increase in mRNA levels of both procollagen I and TGF-, and significant increased liver hydroxyproline content. No differences were seen between rats receiving CDD alone and rats receiving CDD plus losartan with regard to the biochemical, morphological or molecular alterations induced by the CDD. Conclusion:, Losartan does not seem to influence liver injury and fibrogenic events in the CDD model of NASH. [source] The roles of calcium/calmodulin-dependent and Ras/mitogen-activated protein kinases in the development of psychostimulant-induced behavioral sensitizationJOURNAL OF NEUROCHEMISTRY, Issue 1 2003Stephanie C. Licata Abstract Although the development of behavioral sensitization to psychostimulants such as cocaine and amphetamine is confined mainly to one nucleus in the brain, the ventral tegmental area (VTA), this process is nonetheless complex, involving a complicated interplay between neurotransmitters, neuropeptides and trophic factors. In the present review we present the hypothesis that calcium-stimulated second messengers, including the calcium/calmodulin-dependent protein kinases and the Ras/mitogen-activated protein kinases, represent the major biochemical pathways whereby converging extracellular signals are integrated and amplified, resulting in the biochemical and molecular changes in dopaminergic neurons in the VTA that represent the critical neuronal correlates of the development of behavioral sensitization to psychostimulants. Moreover, given the important role of calcium-stimulated second messengers in the expression of behavioral sensitization, these signal transduction systems may represent the biochemical substrate through which the transient neurochemical changes associated with the development of behavioral sensitization are translated into the persistent neurochemical, biochemical and molecular alterations in neuronal function that underlie the long-term expression of psychostimulant-induced behavioral sensitization. [source] New established melanoma cell lines: genetic and biochemical characterization of cell division cycleJOURNAL OF THE EUROPEAN ACADEMY OF DERMATOLOGY & VENEREOLOGY, Issue 1 2003A Vozza ABSTRACT Background Cancer might be envisaged as the result of a genetic process causing the unregulated proliferation of a given cell as well as its inability to undergo differentiation and/or apoptosis. Alterations of genes regulating cell division cycle appear to play a key role in the development of human cancer. Objective On the bases of the above considerations, we decided to establish new cell lines from human melanoma specimens, in order to analyse the molecular alterations in primary preparations of malignant cells. Results The present paper describes two new established cell lines and their genetic and biochemical features. Both the melanoma cell lines show inactivation of the cyclin-dependent kinase inhibitor gene, CDKN2A/p16INK4A, thus demostrating that this alteration occurs in primary human melanomas. No other alterations were observable when we investigated several different cell cycle genes including those encoding cyclins, cyclin-dependent kinases and cyclin-dependent kinase inhibitors. Analyses at protein level by means of immunoblotting confirmed the results obtained at the genetic level. Moreover, the inducibility of a pivotal cyclin-dependent kinase inhibitor gene, namely p21CIP1 gene, was obtained by treating the cells with histone deacetylase inhibitors, namely butyrate and phenylbutyrate. Conclusions Our results suggest a primary role of cyclin-dependent kinase inhibitor genes inactivation in the origin of human melanoma and allow the proposal of new therapeutic strategies based on the transcriptional activation of p21CIP1 gene. [source] Differences in molecular alterations of hepatocellular carcinoma between patients with a sustained virological response and those with hepatitis C virus infectionLIVER INTERNATIONAL, Issue 1 2009Takehiro Hayashi Abstract Background/Aims: The mechanism of hepatocarcinogenesis remains unclear in patients in whom hepatitis C virus (HCV) disappears after interferon (IFN) therapy. We compared molecular alterations in hepatocellular carcinoma (HCC) between patients with a sustained virological response (SVR) to IFN and patients with HCV. Methods: The study group comprised 44 patients with HCV and 13 patients with SVR. One patient in the SVR group had two tumour nodules, both of which were examined. Mitochondrial DNA (mtDNA) mutations in displacement-loop lesions were directly sequenced. Mutation of the TP53 gene was examined by direct sequencing. The methylation status of p16, p15, p14, RB and PTEN genes was evaluated by a methylation-specific polymerase chain reaction. Results: The average number of mtDNA mutations was 4.2 in 44 HCCs with HCV and 2.0 in 14 HCCs with SVR (P=0.0021). mtDNA mutation was less frequently detected in HCCs from patients with SVR than in patients with HCV. TP53 mutations were detected in 12 (27%) of 44 HCCs with HCV and 2 (14%) of 14 SVR-HCCs. Hypermethylation of the p16, p15, p14, RB and PTEN promoters was, respectively, detected in 34, 13, 8, 12 and 11 of 44 HCCs from patients with HCV and 14, 0, 0, 2 and 2 of 14 HCCs from patients with SVR (P=0.049, 0.021, 0.085, 0.322 and 0.402). Hypermethylation of p16 was one of the most important alterations in SVR-HCC. Conclusions: Molecular alterations in hepatocarcinogenesis of patients with SVR-HCC were different from those of patients with continuous HCV infection. [source] PDR16 -mediated azole resistance in Candida albicansMOLECULAR MICROBIOLOGY, Issue 6 2006Saloua Saidane Summary Many Candida albicans azole-resistant (AR) clinical isolates overexpress the CDR1 and CDR2 genes encoding homologous multidrug transporters of the ATP-binding cassette family. We show here that these strains also overexpress the PDR16 gene, the orthologue of Saccharomyces cerevisiae PDR16 encoding a phosphatidylinositol transfer protein of the Sec14p family. It has been reported that S. cerevisiae pdr16, mutants are hypersusceptible to azoles, suggesting that C. albicans PDR16 may contribute to azole resistance in these isolates. To address this question, we deleted both alleles of PDR16 in an AR clinical strain overexpressing the three genes, using the mycophenolic acid resistance flipper strategy. Our results show that the homozygous pdr16,/pdr16, mutant is approximately twofold less resistant to azoles than the parental strain whereas reintroducing a copy of PDR16 in the mutant restored azole resistance, demonstrating that this gene contributes to the AR phenotype of the cells. In addition, overexpression of PDR16 in azole-susceptible (AS) C. albicans and S. cerevisiae strains increased azole resistance by about twofold, indicating that an increased dosage of Pdr16p can confer low levels of azole resistance in the absence of additional molecular alterations. Taken together, these results demonstrate that PDR16 plays a role in C. albicans azole resistance. [source] OLIG-1 and 2 gene expression and oligodendroglial tumoursNEUROPATHOLOGY & APPLIED NEUROBIOLOGY, Issue 2 2002K. Hoang-Xuan OLIG 1/2 genes encode basic helix-loop-helix transcription factors that play a critical role in motor neurone and oligodendrocyte fate specification during development. Two recent studies in which OLIG transcripts were detected by in situ hybridization have reported a high expression of the OLIG genes in oligodendrogliomas. This suggests that the detection of these lineage markers could become an adjunct to the classic morphological diagnosis of these tumours. There are problems in the diagnosis of oligodendroglioma. To date, all other known oligodendrocyte lineage markers have failed to label specifically neoplastic oligodendrocytes. Deletions on chromosome 1p and 19q are much more frequent in oligodendrogliomas than in astrocytomas but these molecular alterations are not constant. For the future, when routinely available, immunohistochemical techniques using anti-OLIG antibodies on paraffin embedded tissues will allow a systematic study of a large series of tumours so that we will know the specificity and sensitivity of this investigation in diagnosis. At another level, it is possible that expression of OLIG in neoplastic oligodendrocyte might participate in the oncogenesis of oligodendrogliomas. Initial work suggests that this is probably not the case. However further in vitro and in vivo studies analysing the functional consequence of OLIG overexpression in terms of proliferation and tumour progression are needed. [source] Molecular genetics of premalignant oral lesionsORAL DISEASES, Issue 2 2007SK Mithani Oral squamous cell carcinoma (OSCC) is characterized by cellular and subcellular alterations that are associated with a progression towards dedifferentiation and growth. There are several histologically distinct lesions of the oral cavity which have malignant potential. These are leukoplakia, erythroplakia, lichen planus, and submucous fibrosis. These are characterized by a spectrum of chromosomal, genetic, and molecular alterations that they share with each other as well as with the malignant lesions that develop from them. In this review we summarize the investigation of the molecular genetics of each of these lesions and relate them to the alterations, which have been demonstrated in OSCC, to define their location on the continuum of changes, which lead to malignant transformation. [source] Characterization of childhood precursor T-lymphoblastic lymphoma by immunophenotyping and fluorescent in situ hybridization: A report from the Children's Oncology GroupPEDIATRIC BLOOD & CANCER, Issue 4 2008Kristi J. Smock MD Abstract Background T-lymphoblastic lymphoma (T-LBL) accounts for 25,30% of childhood non-Hodgkin's lymphoma and is closely related to T-lymphoblastic leukemia (T-ALL). Recently, we demonstrated distinct differences in gene expression between childhood T-LBL and T-ALL, but molecular pathogenesis and relevant protein expression patterns in T-LBL remain poorly understood. Procedure Children with T-LBL with disseminated disease were registered and treated on COG protocol 5971. Paraffin-embedded tumor tissue was obtained at diagnosis for immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH) studies. We determined the pattern and intensity of staining for c-Myc, Skp2, Mib-1, p53, TCL-1, bcl-2, and bcl-6 proteins by IHC and c-Myc, p53, bcl-2, bcl-6, and TCR ,/, molecular alterations by FISH in 22 pediatric T-LBL cases. Results The majority of T-LBL samples expressed Mib-1 (59%) and c-Myc (77%) proteins in greater than 50% of the cells, but Skp2 (14%), p53 (14%), and bcl-2 (23%) expression was less common. FISH studies demonstrated 18% gains and 10% losses in c-Myc, 16% gains in p53, 12% gains and 6% losses in bcl-2, and 6% gains and 19% losses in bcl-6 with little direct correlation between the IHC and FISH studies. Conclusions Childhood T-LBL is a highly proliferative tumor associated with enhanced expression of c-Myc protein, but without detectable c-Myc molecular alterations. FISH studies did not identify consistent etiologies of molecular dysregulation, and future studies with other molecular approaches may be required to elucidate the molecular pathogenesis of childhood T-LBL. Pediatr Blood Cancer 2008;51:489,494. © 2008 Wiley-Liss, Inc. [source] Proteomic profiling of KATP channel-deficient hypertensive heart maps risk for maladaptive cardiomyopathic outcomePROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 5 2009Jelena Zlatkovic Abstract KCNJ11 null mutants, lacking Kir6.2 ATP-sensitive K+ (KATP) channels, exhibit a marked susceptibility towards hypertension (HTN)-induced heart failure. To gain insight into the molecular alterations induced by knockout of this metabolic sensor under hemodynamic stress, wild-type (WT) and Kir6.2 knockout (Kir6.2-KO) cardiac proteomes were profiled by comparative 2-DE and Orbitrap MS. Despite equivalent systemic HTN produced by chronic hyperaldosteronism, 114 unique proteins were altered in Kir6.2-KO compared to WT hearts. Bioinformatic analysis linked the primary biological function of the KATP channel-dependent protein cohort to energetic metabolism (64% of proteins), followed by signaling infrastructure (36%) including oxidoreductases, stress-related chaperones, processes supporting protein degradation, transcription and translation, and cytostructure. Mapped protein,protein relationships authenticated the primary impact on metabolic pathways, delineating the KATP channel-dependent subproteome within a nonstochastic network. Iterative systems interrogation of the proteomic web prioritized heart-specific adverse effects, i.e., "Cardiac Damage", "Cardiac Enlargement", and "Cardiac Fibrosis", exposing a predisposition for the development of cardiomyopathic traits in the hypertensive Kir6.2-KO. Validating this maladaptive forecast, phenotyping documented an aggravated myocardial contractile performance, a massive interstitial fibrosis and an exaggerated left ventricular size, all prognostic indices of poor outcome. Thus, Kir6.2 ablation engenders unfavorable proteomic remodeling in hypertensive hearts, providing a composite molecular substrate for pathologic stress-associated cardiovascular disease. [source] High-throughput single molecule screening of DNA and proteinsTHE CHEMICAL RECORD, Issue 2 2001Edward S. Yeung Abstract We report a novel imaging technology for real time comprehensive analysis of molecular alterations in cells and tissues appropriate for automation and adaptation to high-throughput applications. With these techniques it should eventually be possible to perform simultaneous analysis of the entire contents of individual biological cells with a sensitivity and selectivity sufficient to determine the presence or absence of a single copy of a targeted analyte (e.g., DNA region, RNA region, protein), and to do so at a relatively low cost. The technology is suitable for DNA and RNA through sizing or through fluorescent hybridization probes, and for proteins and small molecules through fluorescence immunoassays. This combination of the lowest possible detection limit and the broadest applicability to biomolecules represents the final frontier in bioanalysis. The general scheme is based on novel concepts for single molecule detection (SMD) and characterization recently demonstrated in our laboratory. Since minimal manipulation is involved, it should be possible to screen large numbers of cells in a short time to facilitate practical applications. This opens up the possibility of finding single copies of DNA or proteins within single biological cells for disease markers without performing polymerase chain reaction or other biological amplification. © 2001 John Wiley & Sons, Inc. and The Japan Chemical Journal Forum Chem Rec 1:123,139, 2001 [source] The oncogenic potential of a prostate cancer-derived androgen receptor mutantTHE PROSTATE, Issue 6 2007Xu-Bao Shi Abstract BACKGROUND The role of androgen receptor (AR) mutations in the initiation of prostate cancer (CaP) remains unclear. The purpose of this study was to assess the influence of an AR mutation on prostate tumorigenesis and to determine the resulting molecular alterations. METHODS Wild-type AR (ARWT) or the CaP-derived K580R AR (ARK580R) mutant was stably transfected into SV40-immortalized human prostate epithelial pRNS-1-1 cells that lack AR expression and fail to grow in nude mice. The ability of these AR-transfected cell lines to form tumor was investigated in vitro and in vivo. Additionally, gene expression profiling of these cell lines was performed. RESULTS Compared with the ARWT, the ARK580R induced greater than sixfold increase in colony formation in soft agar. In vivo studies confirmed that the ARK580R -transfected pRNS-1-1 cells were able to form tumors in nude mice. Using a combination of microarray and RT-PCR, 29 differentially expressed genes were identified in ARK580R cells. It was found that silencing the expression of placental alkaline phosphatase (ALPP) that was upregulated in ARK580R cells resulted in significant inhibition of cell growth. Furthermore, the ARK580R -transfected pRNS-1-1 cells expressed markedly increased p-Akt and p-p70 S6K. CONCLUSION The ARK580R mutation promoted the malignant transformation of prostate epithelial cells. This was associated with upregulation of ALPP and subsequent activation of the Akt signaling pathway. Prostate 67: 591,602, 2007. © 2007 Wiley-Liss, Inc. [source] Diabetic rat testes: morphological and functional alterationsANDROLOGIA, Issue 6 2009G. Ricci Summary Reproductive dysfunction is a consequence of diabetes, but the underlying mechanisms are poorly understood. This study investigated the histological and molecular alterations in the testes of rats injected with streptozotocin at prepuperal (SPI rats) and adult age (SAI rats) to understand whether diabetes affects testicular tissue with different severity depending on the age in which this pathological condition starts. The testes of diabetic animals showed frequent abnormal histology, and seminiferous epithelium cytoarchitecture appeared altered as well as the occludin distribution pattern. The early occurrence of diabetes increased the percentage of animals with high number of damaged tubules. The interstitial compartment of the testes was clearly hypertrophic in several portions of the organs both in SPI and SAI rats. Interestingly, fully developed Leydig cells were present in all the treated animals although abnormally distributed. Besides the above-described damages, we found a similar decrease in plasma testosterone levels both in SPI and SAI rats. Oxidative stress (OS) is involved in the pathogenesis of various diabetic complications, and in our experimental models we found that manganese superoxide dismutase was reduced in diabetic animals. We conclude that in STZ-induced diabetes, the altered spermatogenesis, more severe in SPI animals, is possibly due to the effect of OS on Leydig cell function which could cause the testosterone decrease responsible for the alterations found in the seminiferous epithelium of diabetic animals. [source] Biologic markers in endometrial cancer treatmentAPMIS, Issue 10 2009INGEBORG B ENGELSEN With a lifetime risk among women of 2,3%, endometrial cancer is the most common pelvic gynecologic malignancy in industrialized countries. Approximately 75% of cases are diagnosed at an early stage with a tumor confined to the uterine corpus. Although most patients are cured by surgery alone, about 15,20% with no signs of locally advanced or metastatic disease at primary treatment recurs, with limited responsiveness to systemic therapy. The most common basis for determining the risk of recurrent disease has been classification of endometrial cancers into two subtypes. Type I, associated with a good prognosis, accounts for the majority of cases and is associated with a low-stage, low-grade and endometrioid histology. In contrast, type II, associated with a poor prognosis, is characterized by a high-stage, high-grade and non-endometrioid histology. However, the prognostic value of this distinction is limited, as up to 20% of type I endometrial cancers recur, while half of type II cancers do not. We review the current literature on epidemiology, etiology, pathology, molecular alterations, staging, treatment and prognostic factors in endometrial cancer. Ongoing molecular-based clinical trials and newly reported molecular alterations with a potential for development of new targeted therapy are discussed. [source] |