Mold Count (mold + count)

Distribution by Scientific Domains


Selected Abstracts


Development and Evaluation of an Ozonated Water System for Antimicrobial Treatment of Durum Wheat

JOURNAL OF FOOD SCIENCE, Issue 7 2009
B. Dhillon
ABSTRACT:, Ozonated water is reported to be effective in reducing the microbial load in foods such as fruits, vegetables, and grains. Ozonated water may be an effective alternative to chlorinated water in treating durum wheat before milling. Therefore, durum wheat was washed with ozonated water and analyzed for yeast and mold count (YMC) and aerobic plate count (APC). A system for producing and monitoring ozonated water was developed. The effect of water quality (tap, distilled, and ultra-pure), temperature (7, 15, and 25 °C), and pH (2, 4, and 6.5) was evaluated on the following: steady-state dissolved ozone concentration, ozone decay constant, half-life, mass transfer coefficient, equilibrium ozone concentration, and solubility ratio. The study of these parameters was important to attain a stable, high dissolved ozone concentration at the outset of washing and to have information for system improvement and scale-up. A 1% acetic acid solution (pH 2) at 15 °C resulted in high dissolved ozone concentration (21.8 mg/L) and long half-life (9.2 min). Subsequently, wheat was washed with 5 wash water types: distilled water, ozonated water (16.5 mg/L), chlorinated water (700 mg/L), acetic acid solution (1%), and acetic acid + ozonated water (1%, 20.5 mg/L). The treated samples were analyzed for YMC and APC. The acetic acid + ozonated water treatment was the most effective, with a reduction of 4.1 and 3.2 log10 colony forming units/g in YMC and APC, respectively. Though ozonated water was not very effective alone, it was useful in combination with acetic acid. [source]


Fungistatic Activity of Heat-Treated Flaxseed Determined by Response Surface Methodology

JOURNAL OF FOOD SCIENCE, Issue 6 2008
Y. Xu
ABSTRACT:, The objective of this study was to evaluate the effect of heat treatment on the fungistatic activity of flaxseed (Linum usitatissimum) in potato dextrose agar (PDA) medium and a fresh noodle system. The radial growth of Penicillium chrysogenum, Aspergillus flavus, and a Penicillium sp. isolated from moldy noodles, as well as the mold count of fresh noodle enriched with heat treated flaxseed, were used to assess antifungal activity. A central composite design in the response surface methodology was used to predict the effect of heating temperature and time on antifungal activity of flaxseed flour (FF). Statistical analysis determined that the linear terms of both variables (that is, heating temperature and time) and the quadratic terms of the heating temperature had significant (P < 0.05) effects on the radial growth of all 3 test fungi and the mold count log-cycle reduction of fresh noodle. The interactions between the temperature and time were significant for all dependent variables (P < 0.05). Significant reductions in antifungal activities were found when FF was subjected to high temperatures, regardless of heating time. In contrast, prolonging the heating time did not substantially affect the antifungal activities of FF at low temperature. However, 60% of the antifungal activity was retained after FF was heated at 100 °C for 15 min, which suggests a potential use of FF as an antifungal additive in food products subjected to low to mild heat treatments. [source]


Effect of Hot Water Surface Pasteurization of Whole Fruit on Shelf Life and Quality of Fresh-Cut Cantaloupe

JOURNAL OF FOOD SCIENCE, Issue 3 2008
X. Fan
ABSTRACT:, Cantaloupes are associated with recent outbreaks of foodborne illnesses and recalls. Therefore, new approaches are needed for sanitization of whole and cut fruit. In the present study, whole cantaloupes were submerged into water in the following 3 conditions: 10 °C water for 20 min (control), 20 ppm chlorine at 10 °C for 20 min, and 76 °C water for 3 min. Populations of microflora were measured on the rinds of the whole cantaloupes. Quality and microbial populations of fresh-cut cantaloupes prepared from whole fruit were analyzed after 1, 6, 8, 10, 13, 16, and 20 d of storage at 4 °C. The hot water significantly reduced both total plate count (TPC) and yeast and mold count on rind of whole fruits while chlorine or cold water wash did not result in a significant reduction of microbial population. Fresh-cut pieces prepared from hot water-treated cantaloupes had lower TPC than the other 2 treatments in the later storage periods (days 13 to 20) in 2 of 3 trials. The hot water treatment of whole fruits was inconsistent in reducing yeast and mold count of fresh-cut pieces. Soluble solids content, ascorbic acid content, fluid loss, and aroma and appearance scores were not consistently affected by either hot water or chlorine treatment. Our results suggested that hot water pasteurization of whole cantaloupes frequently resulted in lower TPCs of fresh-cut fruit during storage and did not negatively affect quality of fresh-cut cantaloupes. [source]


DESIGN, CONSTRUCTION AND VALIDATION OF A SANITARY GLOVE BOX PACKAGING SYSTEM FOR PRODUCT SHELF-LIFE STUDIES

JOURNAL OF FOOD PROCESSING AND PRESERVATION, Issue 3 2001
ZEHRA AYHAN
A glove box has been constructed as pan of an integrated pilot plant scale pulsed electric field processing and packaging system to facilitate studies of product shelf-life with selected packaging materials. The glove box was sanitized using combination of hydrogen peroxide and germicidal UV light. A HEPA air filter provided positive pressure of bacteria-free air. Nonselective nutrient broth was sterilized and filled into presanitized bottles inside the glove box. Negative and positive controls were included in the experiment. All bottles were incubated at 22C and 37C for two weeks and checked for rnicrobial growth by measuring optical density at 600 nm using a spectrophotometer and by plating on plate count agar and potato dextrose agar for total aerobic and, yeast and mold counts, respectively. No turbidity or microbial growth was observed in the media filled in the sanitized bottles using the sanitized glove box at 22 and 37C. PEF processed orange juice using this system had a shelf-life of more than 16 weeks at 4C. [source]