Home About us Contact | |||
Mojave Desert (mojave + desert)
Selected AbstractsInfluence of Temporal Scale of Sampling on Detection of Relationships between Invasive Plants and the Diversity Patterns of Plants and ButterfliesCONSERVATION BIOLOGY, Issue 6 2004RALPH MAC NALLY But monitoring is often neglected because it can be expensive and time-consuming. Accordingly, it is valuable to determine whether the temporal extent of sampling alters the validity of inferences about the response of diversity measures to environmental variables affected by restoration actions. Non-native species alter ecosystems in undesirable ways, frequently homogenizing flora and fauna and extirpating local populations of native species. In the Mojave Desert, invasion of salt-cedar (Tamarix ramosissima Ledeb.) and human efforts to eradicate salt-cedar have altered vegetation structure, vegetation composition, and some measures of faunal diversity. We examined whether similar inferences about relationships between plants and butterflies in the Muddy River drainage (Nevada, U.S.A.) could have been obtained by sampling less intensively (fewer visits per site over the same period of time) or less extensively (equal frequency of visits but over a more limited period of time). We also tested whether rank order of butterfly species with respect to occurrence rate (proportion of sites occupied) would be reflected accurately in temporal subsamples. Temporal subsampling did not lead to erroneous inferences about the relative importance of six vegetation-based predictor variables on the species richness of butterflies. Regardless of the temporal scale of sampling, the species composition of butterflies was more similar in sites with similar species composition of plants. The rank order of occurrence of butterfly species in the temporal subsamples was highly correlated with the rank order of species occurrence in the full data set. Thus, similar inferences about associations between vegetation and butterflies and about relative occurrence rates of individual species of butterflies could be obtained by less intensive or extensive temporal sampling. If compromises between temporal intensity and extent of sampling must be made, our results suggest that maximizing temporal extent will better capture variation in biotic interactions and species occurrence. Resumen:,El monitoreo es un componente importante de los esfuerzos de restauración y de manejo adoptivo. Pero el monitoreo a menudo es desatendido porque puede ser costoso y consume tiempo. En consecuencia, es valioso determinar si la extensión temporal del muestreo altera la validez de inferencias sobre la respuesta de medidas de diversidad a variables ambientales afectadas por acciones de restauración. Las especies no nativas alteran a los ecosistemas de manera indeseable, frecuentemente homogenizan la flora y fauna y extirpan poblaciones locales de especies nativas. En el Desierto Mojave, la invasión de Tamarix ramosissima Ledeb. y los esfuerzos humanos para erradicarla han alterado la estructura y composición de la vegetación y algunas medidas de diversidad de fauna. Examinamos si se podían obtener inferencias similares sobre las relaciones entre plantas y mariposas en la cuenca Muddy River (Nevada, E.U.A.) muestreando menos intensivamente (menos visitas por sitio en el mismo período de tiempo) o menos extensivamente (igual frecuencia de visitas pero sobre un período de tiempo más limitado). También probamos si el orden jerárquico de especies de mariposas con respecto a la tasa de ocurrencia (proporción de sitios ocupados) se reflejaba con precisión en las submuestras temporales. El submuestreo temporal no condujo a inferencias erróneas acerca de la importancia relativa de seis variables predictivas basadas en vegetación sobre la riqueza de especies de mariposas. A pesar de la escala temporal del muestreo, la composición de especies de mariposas fue más similar en sitios con composición de especies de plantas similar. El orden jerárquico de ocurrencia de especies de mariposas en las muestras subtemporales estuvo muy correlacionado con el orden jerárquico de ocurrencia de especies en todo el conjunto de datos. Por lo tanto, se pudieron obtener inferencias similares de las asociaciones entre vegetación y mariposas y de las tasas de ocurrencia relativa de especies individuales de mariposas con muestreo temporal menos intensivo o extensivo. Si se deben hacer compromisos entre la intensidad y extensión de muestreo temporal, nuestros resultados sugieren que la maximización de la extensión temporal capturará la variación en interacciones bióticas y ocurrencia de especies más adecuadamente. [source] Spatial and temporal variations in the timing of leaf replacement in a Quercus cornelius-mulleri populationJOURNAL OF VEGETATION SCIENCE, Issue 6 2003Martin L. Cody Nixon & Steele (1981) Abstract. The phenology of spring leaf replacement was studied in a population of 46 evergreen scrub oaks (Quercus cornelius-mulleri) at the edge of the Mojave Desert in each of five years over the period 1990,2001. The oaks occupied a site that spanned rocky slopes to sandy bajadas. The site receives variable annual rainfall (estimated 12-yr average 195 mm; range in study years 67,706 mm). The spatial coordinates of all individuals were recorded, and in April, when leaf replacement was underway, individual replacement phenologies were assessed. Shrub sizes were recorded in three separate years, and in 2001 water potentials were measured. Individuals vary greatly in their timing of leaf replacement within years, and also between years. Many individuals with an early phenology one year are significantly later in the following year, and vice versa. While we detected weak influences on leaf replacement phenology due to shrub size, position within the site, and a genetic component, stronger influences were attributable to the phenology of the shrub in prior years, and to the phenology of neighbours within years. Neighbouring individuals that are close and/or large are significantly disparate in phenology, with one early and the other late. A potential mechanism of local resource depletion associated with costs to an early phenology is discussed. [source] Nocturnally retained zeaxanthin does not remain engaged in a state primed for energy dissipation during the summer in two Yucca species growing in the Mojave DesertPLANT CELL & ENVIRONMENT, Issue 1 2002D. H. Barker Abstract Differently oriented leaves of Yucca schidigera and Yucca brevifolia were characterized in the Mojave Desert with respect to photosystem II and xanthophyll cycle activity during three different seasons, including the hot and dry summer, the relatively cold winter, and the mild spring season. Photosynthetic utilization of a high percentage of the light absorbed in PSII was observed in all leaves only during the spring, whereas very high levels of photoprotective, thermal energy dissipation were employed both in the summer and the winter season in all exposed leaves of both species. Both during the summer and the winter season, when energy dissipation levels were high diurnally, xanthophyll cycle pools (relative to either Chl or other carotenoids) were higher relative to the spring, and a nocturnal retention of high levels of zeaxanthin and antheraxanthin (Z + A) occurred in all exposed leaves of both species. Although this nocturnal retention of Z + A was associated with nocturnal maintenance of a low PSII efficiency (Fv/Fm) on a cold winter night, pre-dawn Fv/Fm was high in (Z + A)-retaining leaves following a warm summer night. This indicates nocturnal engagement of Z + A in a state primed for energy dissipation throughout the cold winter night , while high levels of retained Z + A were not engaged for energy dissipation prior to sunrise on a warm summer morning. Possible mechanisms for a lack of sustained engagement of retained Z + A for energy dissipation at elevated temperatures are discussed. [source] Transplant Survivorship of Bryophyte Soil Crusts in the Mojave DesertRESTORATION ECOLOGY, Issue 2 2010Christina Cole Patches of the dominant biological soil crust moss (Syntrichia caninervis) in the Mojave Desert were subjected to transplant experiments to test the survivability of crustal transplantation due to source or destination microhabitat. After a period of 27 months, all the reciprocally transplanted and replanted sections had survived. However, percent cover of the reciprocally transplanted patches declined 20,50% relative to initial cover compared to a decline in cover of 36,52% for the replanted patches. Similarly, shoot density declined an average of 26% in the transplants and replants. Shoot mortality was essentially negligible through the first 21 months of the study and then declining across all treatments to approximately 5,10 dead shoots/cm2. However, this shoot death was also observed in equivalent densities in the host patches, indicative of a community-wide decline in plant health that was probably related to a regional rainfall deficit over this period. A tendency existed for plants moved from a shaded site to have reduced shoot density in the new site, and plants moved into exposed sites lost significantly more cover than plants moved into shaded sites. These seemingly conflicting trends result from one of the transplant treatments, the shaded to exposed, exhibiting a greater loss in shoot density and decline in cover than its reciprocal transplant, exposed to shaded. For soil restoration of disturbed bryophyte crusts, we recommend using as source material both the exposed and the shaded portions of the crust but avoiding moving Syntrichia from a shaded site into an exposed site. [source] Relationships among non-native plants, diversity of plants and butterflies, and adequacy of spatial samplingBIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 2 2005ERICA FLEISHMAN Non-native invasive species are altering ecosystems in undesirable ways, often leading to biotic homogenization and rapid reduction of evolutionary potential. However, lack of money and time hampers attempts to monitor the outcome of restoration efforts. Hence, it is useful to determine whether relatively limited sampling can provide valid inferences about biological responses to pattern-based and process-based variables that are affected by restoration actions. In the Mojave Desert, invasion of salt-cedar (Tamarix ramosissima) has altered vegetational communities and some measures of faunal diversity. We tested whether six vegetation-based predictor variables affected species richness of butterflies in the Muddy River drainage (Nevada, USA). We also explored whether similar conclusions about relationships between vegetation and butterflies could have been obtained by using data from a subset of the 85 locations included in the study. We found that the effect of non-native plants on species richness of butterflies was negligible. Availability of nectar had the greatest independent explanatory power on species richness of butterflies, followed by species richness of plants. In comparison with the full data set, subsamples including 10, 25 and 50% of sites yielded similar conclusions. Our results suggest that relatively limited data sets may allow us to draw reliable inferences for adaptive management in the context of ecological restoration and rehabilitation. © 2005 The Linnean Society of London, Biological Journal of the Linnean Society, 2005, 85, 157,166. [source] |