Moisture Storage (moisture + storage)

Distribution by Scientific Domains

Kinds of Moisture Storage

  • soil moisture storage


  • Selected Abstracts


    Ecohydrology of a semi-arid forest: partitioning among water balance components and its implications for predicted precipitation changes

    ECOHYDROLOGY, Issue 2 2010
    Naama Raz Yaseef
    Abstract The distribution of precipitation inputs into different hydrological components of water-limited forest ecosystems determines water availability to trees and consequently forest productivity. We constructed a complete hydrological budget of a semi-arid pine forest (285 mm annual precipitation) by directly measuring its main components: precipitation (P), soil water content, evapotranspiration (ET, eddy covariance), tree transpiration (sap flux), soil evaporation (soil chambers), and intercepted precipitation (calculated). Our results indicated that on average for the 4-year study period, ET accounted for 94% of P, varying between 100% when P < 250 mm and 85% when P > 300 mm (with indications for losses to subsurface flow and soil moisture storage in wetter years). Direct measurements of the components of the ET flux demonstrated that both transpiration and soil evaporation were significant in this dry forest (45% and 36% of ET, respectively). Comparison between ecosystem ET (eddy covariance measurements) and the sum of its measured components showed good agreement on annual scales, but up to 30% discrepancies (in both directions) on shorter timescales. The pulsed storm pattern, characteristics of semi-arid climates, was sufficient to maintain the topsoil layer wet during the whole wet season. Only less often and intensive storms resulted in infiltration to the root zone, increasing water availability for uptake by deeper roots. Our results indicate that climate change predictions that link reduced precipitation with increased storm intensity may have a smaller effect on water availability to forest ecosystems than reduced precipitation alone, which could help forests' survival and maintain productivity even under drier conditions. Copyright © 2009 John Wiley & Sons, Ltd. [source]


    Mechanisms and pathways of lateral flow on aspen-forested, Luvisolic soils, Western Boreal Plains, Alberta, Canada

    HYDROLOGICAL PROCESSES, Issue 21 2010
    Todd Redding
    Abstract Rainfall simulation experiments by Redding and Devito (2008, Hydrological Processes 23: 4287,4300) on two adjacent plots of contrasting antecedent soil moisture storage on an aspen-forested hillslope on the Boreal Plain showed that lateral flow generation occurred only once large soil storage capacity was saturated combined with a minimum event precipitation of 15,20 mm. This paper extends the results of Redding and Devito (2008, Hydrological Processes 23: 4287,4300) with detailed analysis of pore pressure, soil moisture and tracer data from the rainfall simulation experiments, which is used to identify lateral flow generation mechanisms and flow pathways. Lateral flow was not generated until soils were wet into the fine textured C horizon. Lateral flow occurred dominantly through the clay-rich Bt horizon by way of root channels. Lateral flow during the largest event was dominated by event water, and precipitation intensity was critical in lateral flow generation. Lateral flow was initiated as preferential flow near the soil surface into root channels, followed by development of a perched water table at depth, which also interacted with preferential flow pathways to move water laterally by the transmissivity feedback mechanism. The results indicate that lateral flow generated by rainfall on these hillslopes is uncommon because of the generally high available soil moisture storage capacity and the low probability of rainfall events of sufficient magnitude and intensity. Copyright © 2010 John Wiley & Sons, Ltd. [source]


    Modification of growing-season surface temperature records in the northern great plains due to land-use transformation: verification of modelling results and implication for global climate change

    INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 3 2004
    Rezaul Mahmood
    Abstract Land-use and land-cover change can modify near-surface atmospheric condition. Mesoscale modelling studies have shown that modification in land use affects near-surface soil moisture storage and energy balance. Such a study in the Great Plains showed that changes in land use from natural grass to irrigated agriculture enhanced soil water storage in the root zone and increased latent energy flux. This increase in latent energy flux would correspond to a decrease in sensible heat flux and, therefore, modify near-surface temperature records. To verify this deduction, we have investigated the changes in the historical near-surface temperature records in Nebraska, USA. We have analysed the long-term mean monthly maximum, minimum, and monthly mean air temperature data from five irrigated and five non-irrigated sites. The cooperative weather observation (coop) network is the source of the data. We have found that there is a clear trend in decreasing mean maximum and average temperature data for irrigated sites. For example, York, NE, reports that the mean maximum growing season temperature is decreasing at the rate ,0.01°C year,1. The results from non-irrigated sites indicated an increasing trend for the same parameters. The data from Halsey, NE, indicate a +0.01°C year,1 increase in this century. In addition, we have conducted similar analyses of temperature data for the National Climatic Data Center's Historical Climatic Network data set for the same locations. The results are similar to that obtained with the coop data set. Further investigation of dew-point temperature records for irrigated and non-irrigated sites also show an increasing and decreasing trend respectively. Therefore, we conclude that the land-use change in the Great Plains has modified near-surface temperature records. Copyright © 2004 Royal Meteorological Society [source]


    A HYDROCLIMATOLOGICAL ANALYSIS OF THE RED RWER OF THE NORTH SNOWMELT FLOOD CATASTROPHE OF 1997,

    JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 5 2001
    Paul E. Todhunter
    ABSTRACT: The flood hydroclimatology of the Grand Forks flood of April 1997, the most costly flood on a per capita basis for a major metropolitan area in United States history, is analyzed in terms of the natural processes that control spring snowmelt flooding in the region. The geomorphological characteristics of the basin are reviewed, and an integrated assessment of the hydroclimatological conditions during the winter of 1996 to 1997 is presented to gain a real-world understanding of the physical basis of this catastrophic flood event. The Grand Forks flood resulted from the principal flood-producing factors occurring at either historic or extreme levels, or at levels conducive to severe flooding. Above normal fall precipitation increased the fall soil moisture storage and reduced the spring soil moisture storage potential. A concrete frost layer developed that effectively reduced the soil infiltration capacity to zero. Record snowfall totals and snow cover depths occurred across the basin because of the unusual persistence of a blocking high circulation pattern throughout the winter. A severe, late spring blizzard delayed the snowmelt season and replenished the snow cover to record levels for early April. This blizzard was followed by a sudden transition to an extreme late season thaw due to the abrupt breakdown of the blocking circulation pattern. The presence of river ice contributed to backwater effects and affected the timing of tributary inflows to the main stem of the Red River. Only the absence of spring rains prevented an even more catastrophic flood disaster from taking place. This paper contributes to our understanding of the flood hydroclimatology of catastrophic flood events in an unusual flood hazard region that possesses relatively flat terrain, a north-flowing river, and an annual peak discharge time series dominated by spring snowmelt floods. [source]


    Effect of high moisture storage of pearl millet (Pennisetum typhoides) with or without feed enzymes on growth and nutrient utilization in broiler chickens

    ANIMAL SCIENCE JOURNAL, Issue 4 2009
    Satish Jagannath MANWAR
    ABSTRACT Effect of reconstitution of pearl millet with or without enzymes on its utilization in broiler chickens was studied. The pearl millet grains were reconstituted by adding water to raise the moisture level to 30%, followed by storage in sealed plastic buckets with or without feed enzymes (0.5 g/kg) for 21 days at room temperature (25°C). Subsequently, the grains were sun-dried to reduce the moisture content up to 10% to avoid mould growth. Nine dietary treatments were formulated incorporating pearl millet either raw with or without enzymes or reconstituted with or without enzymes in maize-soya based control diet replacing maize at 50 and 75% levels. The birds fed on diets containing enzyme reconstituted pearl millet accrued higher body weight than maize based control diet. Addition of enzymes to raw pearl-millet based diet improved the body weight gain significantly. The reconstitution of pearl millet with or without enzymes increased (P < 0.01) the dietary nitrogen corrected apparent metabolizable energy (AMEn) values and the highest improvement (6.11%) was recorded in diets containing pearl millet reconstituted with enzymes at 75% level of maize replacement. The percent nitrogen retention in pearl millet based diets was comparable to maize based control diet. It may be concluded that the supplementation of the feed enzymes or reconstitution of pearl millet may improve the utilization of pearl millet in broiler chickens. [source]