Moisture Absorption (moisture + absorption)

Distribution by Scientific Domains


Selected Abstracts


The Effect of Rapid High Temperature Excursions on the Moisture Absorption and Dynamic Mechanical Properties of Carbon Fibre Epoxy Composite Materials

ASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, Issue 1-2 2004
G. M. Mcnally
The effect of elevated temperature excursions (thermal spiking) on the moisture absorption characteristics and dynamic mechanical properties of Cycom 8 HS carbon fibre epoxy laminates was investigated. Cured laminate samples were preconditioned (65d,C, 95%R.H.) and these samples were exposed to various thermal spiking (150d,C/2min) programmes. Dynamic mechanical thermal analysis (DMTA) techniques measured the changes in glass transition temperature (Tg) storage modulus (log E') and damping (Tan , max) of the laminates as a result of exposure to these environments. The thermal spiking programme was shown to cause an increase in both the amount and rate of moisture absorption of the laminates. These increments were accompanied by a significant decrease in Tg, log E', and Tan , max. Scanning Electron Microscopy (SEM) analysis also showed the progressive growth of both interlaminar and translaminar micro-cracks as a result of thermal spiking. [source]


Moisture absorption behavior of epoxies and their S2 glass composites

JOURNAL OF APPLIED POLYMER SCIENCE, Issue 6 2008
Amit Chatterjee
Abstract The influence of moisture exposure on the behavior of three toughened epoxy,amine systems (scrimp resins SC11, SC15, and SC79, Applied Poleramic, Inc., Benicia, CA) was investigated. Neat resin samples were conditioned by immersion in distilled water at 71°C and in an environmental chamber at 85% relative humidity and 87.8°C until saturation. The equilibrium weight gain ranged from 1.8 to 3.8% for the resins. The long-chain, low-crosslink-density epoxy system (SC11) absorbed the highest amount of water and was saturated first, and it was followed by the medium-crosslink-density (SC15) and high-crosslink-density materials (SC79). The moisture diffusivity decreased with the increasing crosslink density of the resins. The percentage reduction of the glass-transition temperature (Tg) at equilibrium moisture absorption was highest for the low-crosslink molecule. The percentage reductions for the medium-crosslink and higher crosslink systems were comparable. A net weight loss after drying was observed for the SC11 and SC79 resin systems. Fourier transform infrared analysis confirmed the segment breakage and leaching of molecules from the epoxy,amine network. The effects of moisture cycling on Tg were dependent on the epoxy,amine morphology. During the drying stage, Tg increased to a value higher than that of the unaged dry systems. The S2 glass composite samples were conditioned under identical conditions for the resin system. Composite systems absorbed less moisture than the neat resins as expected. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci 2008 [source]


Novel adamantane-containing epoxy resin

JOURNAL OF APPLIED POLYMER SCIENCE, Issue 2 2007
Xiaoming Su
Abstract A novel adamantane-containing epoxy resin diglycidyl ether of bisphenol-adamantane (DGEBAda) was successfully synthesized from 1,3-bis(4-hydroxyphenyl)adamantane by a one-step method. The proposed structure of the epoxy resin was confirmed with Fourier transform infrared, 1H-NMR, gel permeation chromatography, and epoxy equivalent weight titration. The synthesized adamantane-containing epoxy resin was cured with 4,4,-diaminodiphenyl sulfone (DDS) and dicyandiamide (DICY). The thermal properties of the DDS-cured epoxy were investigated with differential scanning calorimetry and thermogravimetric analysis (TGA). The dielectric properties of the DICY-cured epoxy were determined from its dielectric spectrum. The obtained results were compared with those of commercially available diglycidyl ether of bisphenol A (DGEBA), a tetramethyl biphenol (TMBP)/epoxy system, and some other associated epoxy resins. According to the measured values, the glass-transition temperature of the DGEBAda/DDS system (223°C) was higher than that of the DGEBA/DDS system and close to that of the TMBP/DDS system. TGA results showed that the DGEBAda/DDS system had a higher char yield (25.02%) and integral procedure decomposition temperature (850.7°C); however, the 5 wt % degradation temperature was lower than that of DDS-cured DGEBA and TMBP. Moreover, DGEBAda/DDS had reduced moisture absorption and lower dielectric properties. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007 [source]


Physical characteristics and aerosolization performance of insulin dry powders for inhalation prepared by a spray drying method

JOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 7 2007
Yu You
The objective of this study was to investigate the influence of formulation excipients on the physical characteristics and aerosolization performance of insulin dry powders for inhalation. Insulin dry powders were prepared by a spray drying technique using excipients such as sugars (trehalose, lactose and dextran), mannitol and amino acids (L-leucine, glycine and threonine). High performance liquid chromatography and the mouse blood glucose method were used for determination of the insulin content. The powder properties were determined and compared by scanning electron microscopy, thermo-gravimetric analysis and size distribution analysis by a time-of-flight technique. The in-vitro aerosolization behaviour of the powders was assessed with an Aerolizer inhaler using a twin-stage impinger. Powder yield and moisture absorption were also determined. Results showed that there was no noticeable change in insulin content in any of the formulations by both assay methods. All powders were highly wrinkled, with median aerodynamic diameters of 2,4 ,m, and consequently suitable for pulmonary administration. The tapped density was reduced dramatically when glycine was added. The powders containing mannitol, with or without L-Ieucine, were less sensitive to moisture. The highest respirable fraction of 67.3 ± 1.3% was obtained with the formulation containing L-leucine, in contrast to formulations containing glycine and threonine, which had a respirable fraction of 11.2 ± 3.9% and 23.5 ± 2.5%, respectively. In addition, powders with good physical properties were achieved by the combination of insulin and trehalose. This study suggests that L-leucine could be used to enhance the aerosolization behaviour of the insulin dry powders for inhalation, and trehalose could potentially be used as an excipient in the formulations. [source]


Novel organosoluble and colorless poly(ether imide)s based on 3,3-bis[4-(3,4-dicarboxyphenoxy)phenyl]phthalide dianhydride and aromatic bis(ether amine)s bearing pendent trifluoromethyl groups

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 9 2006
Chin-Ping Yang
Abstract A novel series of colorless and highly organosoluble poly(ether imide)s were prepared from 3,3-bis[4-(3,4-dicarboxyphenoxy)phenyl]phthalide dianhydride with various fluorinated aromatic bis(ether amine)s via a conventional two-stage process that included ring-opening polyaddition to form the poly(amic acid)s followed by cyclodehydration to produce the polymer films. The poly(ether imide)s showed excellent solubility, with most of them dissoluble at a concentration of 10 wt % in amide polar solvents, in ether-type solvents, and even in chlorinated solvents. Their films had a cutoff wavelength between 358 and 373 nm, and the yellowness index ranged from 3.1 to 9.5. The glass-transition temperatures of the poly(ether imide) series were recorded between 237 and 297 °C, the decomposition temperatures at 10% weight loss were all above 494 °C, and the residue was more than 54% at 800 °C in nitrogen. These films showed high tensile strength and also were characterized by higher solubility, lighter color, and lower dielectric constants and moisture absorption than an analogous nonfluorinated polyimide series. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3140,3152, 2006 [source]


Physico-Mechanical Properties and the TVOC Emission Factor of Gypsum Particleboards Manufactured with Pinus Massoniana and Eucalyptus Sp.

MACROMOLECULAR MATERIALS & ENGINEERING, Issue 12 2007
Sumin Kim
Abstract The effect of wood species on the TVOC emission factor and the physico-mechanical properties of GPBs is investigated. Of the two wood species, the water absorption was higher for the GPBs made using Eucalyptus sp. than for those using Pinus massoniana. The Eucalyptus sp. GPBs pressed at room temperature, 40 and 60,°C all demonstrated higher moisture absorption than commercial GPBs. The TVOC emission factor decreased with increasing press temperature, especially for Eucalyptus sp. but remained under ,excellent' grade as defined by the KACA. From these results, GPB with higher content of wood particles should be considered for the replacement of wood-based panels such as particleboard and medium density fiberboard (MDF). [source]


Development of a packaging material using antistatic ionomer part 2: charge distributions of potassium ionomer

PACKAGING TECHNOLOGY AND SCIENCE, Issue 5 2007
Nobuyuki Maki
Abstract Generally, plastics and plastic films are low in moisture absorption and high in electric insulation. They are inherently easy to be charged with static and can cause a variety of static troubles. We developed a functional packaging material to solve these static problems, by using potassium ionomer. We reported good antistatic performance (e.g. short static decay time, and excellent ash test) of potassium ionomer films in a previous paper. However, a mechanism underlying the antistatic property of potassium ionomer has not yet been fully elucidated. In this study, we measured the space charge distributions of potassium ionomer using the pulsed electro-acoustic method. As a result of the space charge measurements, we found characteristic charge distribution of potassium ionomer film. On the basis of the existence of this characteristic charge distribution, we speculate that the space electric charge distribution of a potassium ionomer film under a direct current electric field shows apparent electric charge movement. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Development of a packaging material using non-bleed-type antistatic ionomer

PACKAGING TECHNOLOGY AND SCIENCE, Issue 5 2004
Nobuyuki Maki
Abstract Generally, plastics and plastic films are low in moisture absorption and high in electric insulation. They are inherently vulnerable to static charge build-up, which can result in a variety of problems. We have developed a functional packaging material to solve these static problems, by using a potassium salt of ethylene ionomer, which is a non-bleed-type antistatic agent. Good antistatic performance was shown by evaluating a variety of electric characteristics (e.g. the static decay time, ash test and saturated electrostatic charge and half-life) and surface resistivity. In addition, antistatic performance was achieved on the mLLDPE (non-treated) side in a multilayer structure. This means that the use of potassium ionomer on any layers in a multilayer structure provides antistatic performance, leading to the expectation of developing a wide variety and diversity of packaging materials. Copyright © 2004 John Wiley & Sons, Ltd. [source]


Investigation of basalt fiber composite aging behavior for applications in transportation,

POLYMER COMPOSITES, Issue 5 2006
Qiang Liu
New materials such as basalt fiber offer the promise of innovative applications in transportation because of documented strengths (V. Ramakrishnan, N.S. Tolmare, and V. Brik, "NCHRP-IDEA Program Project Final Report, " Transportation Research Board, Washington, DC, (1998)). Previously, we found that mechanical properties of basalt twill fabric-reinforced polymer composites were comparable to composites reinforced with glass fabrics of similar structures [Q. Liu, M.T. Shaw, R.S. Parnas, and A.M. McDonnell, Polymer Composites, 27(1), 41 (2006)]. Use in transportation also requires knowledge of environmental durability. This study reports the tolerance of basalt-fiber-reinforced polymer composites to salt water immersion, moisture absorption, temperature, and moisture cycling. Parallel tests were conducted for the corresponding glass-reinforced polymer composites. Aging for 240 days in salt water or water decreased the Young's modulus and tensile strength of basalt composites slightly but significantly (p < 0.05). Freeze-thaw cycling up to 199 cycles did not change the shear strength significantly, but aging in hot (40°C) salt water or water did decrease the shear strength of basalt composites (p < 0.05). The aging results indicate that the interfacial region in basalt composites may be more vulnerable to damage than that in glass composites. POLYM. COMPOS., 27:475,483, 2006. © 2006 Society of Plastics Engineers [source]


The influence of fiber surface modification on the mechanical properties of coir-polyester composites

POLYMER COMPOSITES, Issue 4 2001
J. Rout
Coir, an important lignocellulosic fiber, can be incorporated in polymers like unsaturated polyester in different ways for achieving desired properties and texture. But its high level of moisture absorption, poor wettability and insufficient adhesion between untreated fiber and the polymer matrix lead to debonding with age. In order to improve the above qualities, adequate surface modification is required. In our present work, fiber surface modification was effected through dewaxing, alkali (5%) treatment, aqueous graft copolymerization of methyl methacrylate (MMA) onto 5% alkali treated coir for different extents using CuSO4 , NaIO4 combination as an initiator system and cyanoexhylation with a view to improve the mechanical performance of coir-polyester composites. Mechanical properties like tensile strength (PS), flexural strength (ES) and impact strength (IS) of the composites as a function of fiber loading and fiber surface modification have been evaluated. Composites containing z5 wt% of fiber (untreated) improved tensile and flexural strength by 30% and 27% respectively in comparison to neat polyester. The work of fracture (impact strength) of the composite with 25 wt% fiber content was found to be 967 J/m. The elongation at break of the composites exhibits an increase with the introduction of fiber, All types of surface modification result In improved mechanical properties of the composites. Significant improvement in mechanical strength was also observed for composites prepared from 5% PMMA grafted fiber. [source]


Planar aqueous electrode technique for polymer impedance spectroscopy

POLYMER ENGINEERING & SCIENCE, Issue 3 2009
T. Bai
In this article, we develop an aqueous electrode technique that can adapt to complex sample geometries while maintaining perfect contact between the electrodes and the measured sample. In contrast to surface deposited electrodes, the aqueous electrode technique measures the ionic conduction of the polymer sample instead of the inherent dielectric properties of the polymer. Polymer ionic conduction is often related to the polymer thermodynamic state, which itself is closely linked to many other polymer properties. As such, the aqueous electrode method provides an approach to conduct in situ monitoring of polymer samples subjected to degradation; changes in the impedance provide an indication of polymer sample degradation. This article presents the aqueous electrode setup and discusses experimental results obtained using it. Changes in the impedance response of PVC and polyimide films due to moisture absorption, ionic conduction, pinholes, chemical degradation, and temperature are presented. POLYM. ENG. SCI., 2009. © 2008 Society of Plastics Engineers [source]


Effects of defrosting period on mold adhesion force of epoxy molding compound

ASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, Issue 2 2009
Hwe-Zhong Chen
Abstract In integrated circuit (IC) packaging, when epoxy-molding compound (EMC) is filled in the mold cavity and cured in the mold, adhesion occurs in the interface between EMC and the mold surface. Too large an adhesion force can cause many problems. For example, too large an adhesion force may damage an IC during ejection and cause the package to fail and thus lower the yield rate. To resolve mold adhesion problems, improving the mold design and applying suitable surface treatments, such as mold surface coating, are the common approaches. Applying suitable surface coating is a more popular and practical approach. Defrosting is a process to increase the frozen EMC temperature to room temperature, and to retain it at room temperature for some period before molding. It is a common practice to put EMC under required atmospheric environment during defrosting. It has been found by molding engineers that increased defrosting period will increase the frequency of mold cleaning. But there is no quantitative description on how much the adhesion force increases during the defrosting process. This paper describes the use of a semiautomatic EMC adhesion force test instrument to measure the normal adhesion force between the mold surface and EMC. By measuring the adhesion force, one can quantify how much adhesion force exists between EMC and the mold surface under different defrosting periods. The results show that it is best to use the EMC with 24,32 h of defrosting, to prevent excessive amount of mold adhesion force and it has been found that the adhesion force of the 24 h defrosting period will be 24% less than that of the 48 h defrosting period. Decreasing moisture absorption will decrease the increase in adhesion force for prolonged defrosting period cases. Copyright © 2008 Curtin University of Technology and John Wiley & Sons, Ltd. [source]


The Effect of Rapid High Temperature Excursions on the Moisture Absorption and Dynamic Mechanical Properties of Carbon Fibre Epoxy Composite Materials

ASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, Issue 1-2 2004
G. M. Mcnally
The effect of elevated temperature excursions (thermal spiking) on the moisture absorption characteristics and dynamic mechanical properties of Cycom 8 HS carbon fibre epoxy laminates was investigated. Cured laminate samples were preconditioned (65d,C, 95%R.H.) and these samples were exposed to various thermal spiking (150d,C/2min) programmes. Dynamic mechanical thermal analysis (DMTA) techniques measured the changes in glass transition temperature (Tg) storage modulus (log E') and damping (Tan , max) of the laminates as a result of exposure to these environments. The thermal spiking programme was shown to cause an increase in both the amount and rate of moisture absorption of the laminates. These increments were accompanied by a significant decrease in Tg, log E', and Tan , max. Scanning Electron Microscopy (SEM) analysis also showed the progressive growth of both interlaminar and translaminar micro-cracks as a result of thermal spiking. [source]


Synthesis and physical properties of low-molecular-weight redistributed poly(2,6-dimethyl-1,4-phenylene oxide) for epoxy resin

JOURNAL OF APPLIED POLYMER SCIENCE, Issue 3 2008
Hann-Jang Hwang
Abstract Low-molecular-weight poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) was prepared by the redistribution of regular PPO with 4,4,-isopropylidenediphenol (bisphenol A) with benzoyl peroxide as an initiator in toluene. The redistributed PPO was characterized by proton nuclear magnetic resonance, mass spectra, and Fourier transform infrared spectroscopy. The redistributed PPO oligomers with terminal phenolic hydroxyl groups and low molecular weights (weight-average molecular weight = 800,4000) were used in the modification of a diglycidyl ether of bisphenol A/4,4,-diaminodiphenylmethane network system. The curing behaviors were investigated by differential scanning calorimetry and Fourier transform infrared spectroscopy. The effect of molecular weight and the amount of redistributed PPO oligomers incorporated into the network on the physical properties of the resulting systems were investigated. The thermal properties of the cured redistributed PPO/epoxy resins were studied by dynamic mechanical analysis, thermal mechanical analysis, thermogravimetric analysis, and dielectric analysis. These cured redistributed PPO/epoxy resins exhibited lower dielectric constants, dissipation factors, coefficients of thermal expansion, and moisture absorptions than those of the control diglycidyl ether of bisphenol A based epoxy. The effects of the composition on the glass-transition temperature and thermal stability are discussed. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 [source]


Effects of diamines and their fluorinated groups on the color lightness and preparation of organosoluble aromatic polyimides from 2,2-bis[4-(4-amino-2-trifluoromethylphenoxy)phenyl]-hexafluoropropane

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 7 2003
Chin-Ping Yang
Abstract To investigate the position and amount of the CF3 group affecting the coloration of polyimides (PIs), we prepared 2,2-bis[4-(4-amino-2-trifluoromethylphenoxy)phenyl]hexafluoropropane (2) with four CF3 groups with 2-chloro-5-nitrobenzotrifluoride and 2,2-bis(4-hydroxyphenol)hexafluoropropane. A series of soluble and light-colored fluorinated PIs (5) were synthesized from 2 and various aromatic dianhydrides (3a,3f). 5a,5f had inherent viscosities ranging from 0.80 to 1.19 dL/g and were soluble in amide polar solvents and even in less polar solvents. The glass-transition temperatures of 5 were 221,265 °C, and the 10% weight-loss temperatures were above 493 °C. Their films had cutoff wavelengths between 343 and 390 nm, b* values (a yellowness index) ranging from 5 to 41, dielectric constants of 2.68,3.01 (1 MHz), and moisture absorptions of 0.03,0.29 wt %. In a comparison of the PI series 6,8 based on 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane, 2,2-bis[4-(4-amino-2-trifluoromethylphenoxy)phenyl]propane, and 2,2-bis[4-(4-aminophenoxy)phenyl]propane, we found that the CF3 group close to the imide group was more effective in lowering the color; this means that CF3 of 5, 7, and 8f was more effective than that of 6c. The color intensity of the four PI series was lowered in the following order: 5 > 7 > 6 > 8. The PI 5f, synthesized from diamine 2 and 4,4,-hexafluoroisopropylidenediphthalic anhydride, had six CF3 groups in a repeated segment, so it exhibited the lightest color among the four series. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 922,938, 2003 [source]