Modifying Enzymes (modifying + enzyme)

Distribution by Scientific Domains


Selected Abstracts


Kinetic mechanism for p38 MAP kinase ,

FEBS JOURNAL, Issue 18 2005
A partial rapid-equilibrium random-order ternary-complex mechanism for the phosphorylation of a protein substrate
p38 Mitogen-activated protein kinase alpha (p38 MAPK,) is a member of the MAPK family. It is activated by cellular stresses and has a number of cellular substrates whose coordinated regulation mediates inflammatory responses. In addition, it is a useful anti-inflammatory drug target that has a high specificity for Ser-Pro or Thr-Pro motifs in proteins and contains a number of transcription factors as well as protein kinases in its catalog of known substrates. Fundamental to signal transduction research is the understanding of the kinetic mechanisms of protein kinases and other protein modifying enzymes. To achieve this end, because peptides often make only a subset of the full range of interactions made by proteins, protein substrates must be utilized to fully elucidate kinetic mechanisms. We show using an untagged highly active form of p38 MAPK,, expressed and purified from Escherichia coli[Szafranska AE, Luo X & Dalby KN (2005) Anal Biochem336, 1,10) that at pH 7.5, 10 mm Mg2+ and 27 °C p38 MAPK, phosphorylates ATF2,115 through a partial rapid-equilibrium random-order ternary-complex mechanism. This mechanism is supported by a combination of steady-state substrate and inhibition kinetics, as well as microcalorimetry and published structural studies. The steady-state kinetic experiments suggest that magnesium adenosine triphosphate (MgATP), adenylyl (,,,-methylene) diphosphonic acid (MgAMP-PCP) and magnesium adenosine diphosphate (MgADP) bind p38 MAPK, with dissociation constants of KA = 360 µm, KI = 240 µm, and KI > 2000 µm, respectively. Calorimetry experiments suggest that MgAMP-PCP and MgADP bind the p38 MAPK,,ATF2,115 binary complex slightly more tightly than they do the free enzyme, with a dissociation constant of Kd , 70 µm. Interestingly, MgAMP-PCP exhibits a mixed inhibition pattern with respect to ATF2,115, whereas MgADP exhibits an uncompetitive-like pattern. This discrepancy occurs because MgADP, unlike MgAMP-PCP, binds the free enzyme weakly. Intriguingly, no inhibition by 2 mm adenine or 2 mm MgAMP was detected, suggesting that the presence of a ,-phosphate is essential for significant binding of an ATP analog to the enzyme. Surprisingly, we found that inhibition by the well-known p38 MAPK, inhibitor SB 203580 does not follow classical linear inhibition kinetics at concentrations >,100 nm, as previously suggested, demonstrating that caution must be used when interpreting kinetic experiments using this inhibitor. [source]


Chromatin-remodelling proteins of the pea aphid, Acyrthosiphon pisum (Harris)

INSECT MOLECULAR BIOLOGY, Issue 2010
S. D. Rider Jr
Abstract Aphids display extraordinary developmental plasticity in response to environmental cues. These differential responses to environmental changes may be due in part to changes in gene expression patterns. To understand the molecular basis for aphid developmental plasticity, we attempted to identify the chromatin-remodelling machinery in the recently sequenced pea aphid genome. We find that the pea aphid possesses a complement of metazoan histone modifying enzymes with greater gene family diversity than that seen in a number of other arthropods. Several genes appear to have undergone recent duplication and divergence, potentially enabling greater combinatorial diversity among the chromatin-remodelling complexes. The abundant aphid chromatin modifying enzymes may facilitate the phenotypic plasticity necessary to maintain the complex life cycle of the aphid. [source]


Bifidobacterium carbohydrases-their role in breakdown and synthesis of (potential) prebiotics

MOLECULAR NUTRITION & FOOD RESEARCH (FORMERLY NAHRUNG/FOOD), Issue 1 2008
Lambertus A. M. van den Broek
Abstract There is an increasing interest to positively influence the human intestinal microbiota through the diet by the use of prebiotics and/or probiotics. It is anticipated that this will balance the microbial composition in the gastrointestinal tract in favor of health promoting genera such as Bifidobacterium and Lactobacillus. Carbohydrates like non-digestible oligosaccharides are potential prebiotics. To understand how these bacteria can grow on these carbon sources, knowledge of the carbohydrate-modifying enzymes is needed. Little is known about the carbohydrate-modifying enzymes of bifidobacteria. The genome sequence of Bifidobacterium adolescentis and Bifidobacterium longum biotype longum has been completed and it was observed that for B. longum biotype longum more than 8% of the annotated genes were involved in carbohydrate metabolism. In addition more sequence data of individual carbohydrases from other Bifidobacterium spp. became available. Besides the degradation of (potential) prebiotics by bifidobacterial glycoside hydrolases, we will focus in this review on the possibilities to produce new classes of non-digestible oligosaccharides by showing the presence and (transglycosylation) activity of the most important carbohydrate modifying enzymes in bifidobacteria. Approaches to use and improve carbohydrate-modifying enzymes in prebiotic design will be discussed. [source]


Impact of the transcriptional regulator, Ace2, on the Candida glabrata secretome

PROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 2 2010
David A. Stead
Abstract Candida glabrata is a major fungal pathogen of humans, and the virulence of C. glabrata is increased by inactivation of the transcription factor, Ace2. Our previous examination of the effects of Ace2 inactivation upon the intracellular proteome suggested that the hypervirulence of C. glabrata ace2 mutants might be caused by differences in the secretome. Therefore in this study we have characterised the C. glabrata secretome and examined the effects of Ace2 inactivation upon this extracellular proteome. We have identified 31 distinct proteins in the secretome of wild-type C. glabrata cells by MS/MS of proteins that were precipitated from the growth medium and enriched by affinity chromatography on concanavalin A. Most of these proteins are predicted to be cell wall proteins, cell wall modifying enzymes and aspartyl proteinases. The endochitinase Cts1 and the endoglucanase Egt2 were not detected in the C. glabrata secretome following Ace2 inactivation. This can account for the cell separation defect of C. glabrata ace2 cells. Ace2 inactivation also resulted in the detection of new proteins in the C. glabrata secretome. The release of such proteins might contribute to the hypervirulence of ace2 cells. [source]