Home About us Contact | |||
Missouri River (missouri + river)
Selected AbstractsTributaries influence recruitment of fish in large riversECOLOGY OF FRESHWATER FISH, Issue 4 2009B. M. Pracheil Abstract,,, Recent work demonstrates that tributary inputs are important community reorganisation points for river biota; however, no studies have examined the long-term effects of tributary inputs on fish population dynamics. This study examines nearly 40 years of young-of-year (yoy) paddlefish recruitment data to investigate the hypothesis that tributaries influence mainstem fish population dynamics. We generated hydrological variables from daily mean flow data (1965,2007) from an impounded reach of the mainstem Missouri River and from the Niobrara River, a relatively unaltered tributary, using Indicators of Hydrologic Alteration software. Three multiple regression models using natural-log transformed catch per unit effort (log cpue) as the response variable were created using (1) Missouri River-only flow variables, (2) Niobrara River-only flow variables and (3) Missouri River and Niobrara River flow variables. Flow variables from the Niobrara River explain a greater proportion of yoy paddlefish log cpue variability demonstrating that tributaries can positively impact fish population dynamics in altered rivers. [source] Habitat use and population structure of four native minnows (family Cyprinidae) in the upper Missouri and lower Yellowstone rivers, North Dakota (USA)ECOLOGY OF FRESHWATER FISH, Issue 1 2004T. L. Welker Abstract,,, In 1997 and 1998, sampling was conducted on the Missouri and Yellowstone rivers, North Dakota, to obtain information on the distribution, abundance, and habitat use of the flathead chub (Platygobio gracilis Richardson), sicklefin chub (Macrhybopsis meeki Jordan & Evermann), sturgeon chub (Macrhybopsis gelida Girard), and western silvery minnow (Hybognathus argyritis Girard), four declining fish species (family Cyprinidae) native to the Missouri River basin, USA. The study area consisted of four distinct river segments near the confluence of the Missouri and Yellowstone rivers , three moderately altered segments that were influenced by a main-stem dam and one quasi-natural segment. One moderately altered segment was located at the confluence of the two rivers (mixing-zone segment (MZS)). The other two moderately altered segments were in the Missouri River adjacent to the MZS and extended up-river (above-confluence segment (ACS)) and down-river (below-confluence segment (BCS)) from this segment. The quasi-natural segment (Yellowstone River segment (YRS)) extended up-river from the MZS in the Yellowstone River. Catch rates with the trawl for sicklefin chub and sturgeon chub and catch rates with the bag seine for flathead chub and western silvery minnow were highest in the BCS and YRS. Most sicklefin and sturgeon chubs were captured in the deep, high-velocity main channel habitat with the trawl (sicklefin chub, 97%; sturgeon chub, 85%), whereas most flathead chub and western silvery minnow were captured in the shallow, low-velocity channel border habitat with the bag seine (flathead chub, 99%; western silvery minnow, 98%). Best-fit regression models correctly predicted the presence or absence of sicklefin chub, flathead chub, and western silvery minnow more than 80% of the time. Sturgeon chub presence and absence were predicted correctly 55% of the time. Best-fit regression models fit to fish number data for flathead chub, sicklefin chub, and sturgeon chub and fish catch-per-unit-effort (CPUE) data for flathead chub also provided good fits, with R2 values ranging from 0.32 to 0.55 (P < 0.0001). The higher density and catch of the four native minnows in the YRS and BCS suggest that these two segments are better habitat than the ACS and MZS. [source] Causes for the decline of suspended-sediment discharge in the Mississippi River system, 1940,2007,HYDROLOGICAL PROCESSES, Issue 1 2010Robert H. Meade Abstract Before 1900, the Missouri,Mississippi River system transported an estimated 400 million metric tons per year of sediment from the interior of the United States to coastal Louisiana. During the last two decades (1987,2006), this transport has averaged 145 million metric tons per year. The cause for this substantial decrease in sediment has been attributed to the trapping characteristics of dams constructed on the muddy part of the Missouri River during the 1950s. However, reexamination of more than 60 years of water- and sediment-discharge data indicates that the dams alone are not the sole cause. These dams trap about 100,150 million metric tons per year, which represent about half the decrease in sediment discharge near the mouth of the Mississippi. Changes in relations between water discharge and suspended-sediment concentration suggest that the Missouri,Mississippi has been transformed from a transport-limited to a supply-limited system. Thus, other engineering activities such as meander cutoffs, river-training structures, and bank revetments as well as soil erosion controls have trapped sediment, eliminated sediment sources, or protected sediment that was once available for transport episodically throughout the year. Removing major engineering structures such as dams probably would not restore sediment discharges to pre-1900 state, mainly because of the numerous smaller engineering structures and other soil-retention works throughout the Missouri,Mississippi system. Published in 2009 by John Wiley & Sons, Ltd. [source] Do larval fishes exhibit diel drift patterns in a large, turbid river?JOURNAL OF APPLIED ICHTHYOLOGY, Issue 4 2010K. S. Reeves Summary Previous research suggested larval fishes do not exhibit a diel drift cycle in turbid rivers (transparency <30 cm). We evaluated this hypothesis in the turbid, lower Missouri River, Missouri. We also reviewed diel patterns of larval drift over a range of transparencies in rivers worldwide. Larval fishes were collected from the Missouri River primary channel every 4 h per 24-h period during spring-summer 2002. Water transparency was measured during this period and summarized for previous years. Diel drift patterns were analyzed at the assemblage level and lower taxonomic levels for abundant groups. Day and night larval fish catch-per-unit-effort (CPUE) was compared for the entire May through August sampling period and spring (May , June) and summer (July , August) seasons separately. There were no significant differences between day and night CPUE at the assemblage level for the entire sampling period or for the spring and summer seasons. However, Hiodon alosoides, Carpiodes/Ictiobus spp. and Macrhybopsis spp. exhibited a diel cycle of abundance within the drift. This pattern was evident although mean Secchi depth (transparency) ranged from 4 to 25 cm during the study and was <30 cm from May through August over the previous nine years. Larval diel drift studies from 48 rivers excluding the Missouri River indicated the primary drift period for larval fishes was at night in 38 rivers and during the day for five, with the remaining rivers showing no pattern. Water transparency was reported for 10 rivers with six being <30 cm or ,low'. Two of these six turbid rivers exhibited significant diel drift patterns. The effect of water transparency on diel drift of larval fishes appears taxa-specific and patterns of abundant taxa could mask patterns of rare taxa when analyzed only at the assemblage level. [source] Stock structure of pallid sturgeon analyzed with microsatellite lociJOURNAL OF APPLIED ICHTHYOLOGY, Issue 4 2007A. W. Schrey Summary Recovery efforts for the endangered pallid sturgeon (Scaphirhynchus albus) include supplementation of wild stocks with hatchery reared progeny. Identifying the extent of genetic stock structure, which has previously been detected in samples from the range extremes, will help to determine whether stock transfers might be harmful. DNA microsatellite genotypes were screened in pallid sturgeon from the upper Missouri River, lower Missouri River, middle Mississippi River and Atchafalaya River and analyzed using a combination of Bayesian model-based and more traditional F-statistic based methods to characterize genetic differentiation. Scaphirhynchus specimens were collected by researchers active in the recovery effort and genotypes were screened at 16 microsatellite loci. Because there is considerable genetic and morphological overlap between pallid sturgeon, shovelnose sturgeon, and their hybrids, a combination of morphological and genetic techniques were used to eliminate shovelnose and possible hybrids from the sample. Genetic differentiation was detected among samples (overall , = 0.050, P = 0.001). Pairwise ,, genetic distances, and Bayesian assignment testing reveal that pallid sturgeon from the upper Missouri River are the most distinct group with pairwise comparisons of pallid sturgeon among all the remaining samples exhibiting lower , values, higher genetic distances, and self assignment scores. Our results indicate that using local broodstock, when available, should be used for pallid sturgeon propagation. If local broodstock are not available, geographically proximate individuals would limit genetic differences between native and stocked individuals. [source] MISSOURI RIVER FLOOD OF 1993: ROLE OF WOODY CORRIDOR WIDTH IN LEVEE PROTECTION,JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 4 2003Stephen B. Allen ABSTRACT. We investigated the relationships between levee damage and woody corridor along a 353-mile segment of the Missouri River in Missouri during the flood of 1993. Results indicated that woody corridors between riverbanks and primary levees played a significant role in the reduction or prevention of flood related damage to levees. Forty-one percent of levee failures in this segment occurred in areas with no woody corridor, while 74 percent and 83 percent of failures occurred where woody corridor widths were less than 300 feet and less than 500 feet, respectively. Median failure lengths with a woody corridor present were 50.3 percent shorter than median failure lengths with no woody corridor present. Levees without failures had significantly wider median woody corridor widths than levees that failed. Eligibility for the Corps of Engineers levee maintenance program was not a significant factor in the reduction of levee damage. Discontinuities in woody corridors played a role in 27.5 percent of the levee failures in the study segment. Smaller segments of the river valley were studied to determine if geomorphic differences influenced variations in the protective value of woody corridors. [source] Insulating effect of coals and organic rich shales: implications for topography-driven fluid flow, heat transport, and genesis of ore deposits in the Arkoma Basin and Ozark PlateauBASIN RESEARCH, Issue 2 2002J.A. Nunn ABSTRACT Sedimentary rocks rich in organic matter, such as coal and carbonaceous shales, are characterized by remarkably low thermal conductivities in the range of 0.2,1.0 W m,1 °C,1, lower by a factor of 2 or more than other common rock types. As a result of this natural insulating effect, temperature gradients in organic rich, fine-grained sediments may become elevated even with a typical continental basal heat flow of 60 mW m,2. Underlying rocks will attain higher temperatures and higher thermal maturities than would otherwise occur. A two-dimensional finite element model of fluid flow and heat transport has been used to study the insulating effect of low thermal conductivity carbonaceous sediments in an uplifted foreland basin. Topography-driven recharge is assumed to be the major driving force for regional groundwater flow. Our model section cuts through the Arkoma Basin to Ozark Plateau and terminates near the Missouri River, west of St. Louis. Fluid inclusions, organic maturation, and fission track evidence show that large areas of upper Cambrian rocks in southern Missouri have experienced high temperatures (100,140 °C) at shallow depths (< 1.5 km). Low thermal conductivity sediments, such as coal and organic rich mudstone were deposited over the Arkoma Basin and Ozark Plateau, as well as most of the mid-continent of North America, during the Late Palaeozoic. Much of these Late Palaeozoic sediments were subsequently removed by erosion. Our model results are consistent with high temperatures (100,130 °C) in the groundwater discharge region at shallow depths (< 1.5 km) even with a typical continental basal heat flow of 60 mW m,2. Higher heat energy retention in basin sediments and underlying basement rocks prior to basin-scale fluid flow and higher rates of advective heat transport along basal aquifers owing to lower fluid viscosity (more efficient heat transport) contribute to higher temperatures in the discharge region. Thermal insulation by organic rich sediments which traps heat transported by upward fluid advection is the dominant mechanism for elevated temperatures in the discharge region. This suggests localized formation of ore deposits within a basin-scale fluid flow system may be caused by the juxtaposition of upward fluid discharge with overlying areas of insulating organic rich sediments. The additional temperature increment contributed to underlying rocks by this insulating effect may help to explain anomalous thermal maturity of the Arkoma Basin and Ozark Plateau, reducing the need to call upon excessive burial or high basal heat flow (80,100 mW m,2) in the past. After subsequent uplift and erosion remove the insulating carbonaceous layer, the model slowly returns to a normal geothermal gradient of about 30 °C km,1. [source] Does attraction to conspecifics explain the patch-size effect?OIKOS, Issue 8 2009An experimental test Recent theory suggests that attraction to conspecifics during habitat selection can be one potential, yet untested, mechanism for animal sensitivity to habitat fragmentation. The least flycatcher Empidonax minimus, a highly territorial migratory bird, has previously been shown to be attracted to conspecifics and sensitive to patch size by avoiding small patches of riparian forest in Montana, USA. I used a large-scale field experiment in this region to test the conspecific attraction hypothesis for explaining sensitivity to patch size, and I supplemented this experiment by estimating whether vegetation structure, nest predation, or nest parasitism rates could better explain patterns of sensitivity to patch size. Vegetation structure did not vary consistently with patch size, based on a random sample of patches across 150,km of the Madison and Missouri Rivers, Montana. Nest predation and parasitism rates by brown-headed cowbirds Molothrus ater also did not vary with patch size during the experiment. However, when conspecific cues were simulated across a gradient of patch sizes, flycatchers settled in all patches , and their sensitivity to patch size vanished , providing strong support for the conspecific attraction hypothesis. These results provide the first experimental evidence that attraction to conspecifics can indeed help explain area sensitivity in nature and highlight how understanding the role of animal behavior in heterogeneous landscapes can aid in interpreting pressing conservation issues. [source] Stock characteristics of shovelnose sturgeon in the lower Platte River, NebraskaJOURNAL OF APPLIED ICHTHYOLOGY, Issue 4 2007D. A. Shuman Summary The objectives of this research were to evaluate the condition, size structure, and growth of shovelnose sturgeon (Scaphirhynchus platorynchus) in the lower Platte River, Nebraska. A total of 1338 shovelnose sturgeon was collected using drifted gill and trammel nets (n = 954), trot lines (n = 340), and benthic trawls (n = 44) in the spring, summer, and autumn from four reaches: (i) Two Rivers State Park, (ii) confluence of Platte and Elkhorn rivers (iii) Louisville, Nebraska, and (iv) confluence of Platte and Missouri rivers during the spring, summer, and autumn of 2000 through 2004. Structural and condition indices were compared among reaches and years. Incremental relative stock densities (RSD) for shovelnose sturgeon sampled throughout the entire lower Platte River were: stock-quality (1), quality-preferred (12), preferred-memorable (82), and memorable-trophy (5). Proportional stock values were >99 for all years. A significance was detected in RSD categories among reaches and years with larger length-categories observed in the upstream reaches. Mean relative weight (Wr) for all shovelnose sturgeon was 86.5, indicating a fit population. Mean Wr showed no significant differences among years, but significance was detected among reaches and RSD categories. Shovelnose sturgeon in the lower Platte River appear to be in good condition and exhibit different length-frequency distributions longitudinally. [source] |