Mississippi River (mississippi + river)

Distribution by Scientific Domains

Kinds of Mississippi River

  • upper mississippi river

  • Terms modified by Mississippi River

  • mississippi river basin

  • Selected Abstracts


    NUTRIENTS DISCHARGED TO THE MISSISSIPPI RIVER FROM EASTERN IOWA WATERSHEDS, 1996.1997,

    JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 1 2000
    Kent D. Becher
    ABSTRACT: The introduction of nutrients from chemical fertilizer, animal manure, wastewater, and atmospheric deposition to the eastern Iowa environment creates a large potential for nutrient transport in watersheds. Agriculture constitutes 93 percent of all land use in eastern Iowa. As part of the U.S. Geological Survey National Water Quality Assessment Program, water samples were collected (typically monthly) from six small and six large watersheds in eastern Iowa between March 1996 and September 1997. A Geographic Information System (GIS) was used to determine land use and quantify inputs of nitrogen and phosphorus within the study area. Streamliow from the watersheds is to the Mississippi River. Chemical fertilizer and animal manure account for 92 percent of the estimated total nitrogen and 99.9 percent of the estimated total phosphorus input in the study area. Total nitrogen and total phosphorus loads for 1996 were estimated for nine of the 12 rivers and creeks using a minimum variance unbiased estimator model. A seasonal pattern of concentrations and loads was observed. The greatest concentrations and loads occur in the late spring to early summer in conjunction with row-crop fertilizer applications and spring nmoff and again in the late fall to early winter as vegetation goes into dormancy and additional fertilizer is applied to row-crop fields. The three largest rivers in eastern Iowa transported an estimated total of 79,000 metric tons of total nitrogen and 6,800 metric tons of total phosphorus to the Mississippi River in 1996. The estimated mass of total nitrogen and total phosphorus transported to the Mississippi River represents about 19 percent of all estimated nitrogen and 9 percent of all estimated phosphorus input to the study area. [source]


    Planform dynamics of the Lower Mississippi River

    EARTH SURFACE PROCESSES AND LANDFORMS, Issue 7 2006
    Oliver P. Harmar
    Abstract This paper presents an analysis of the planform behaviour of the Lower Mississippi River (LMR) using a series of maps and hydrographic surveys covering the period 1765,1975. Data allow analysis at various time and space scales, using fixed and statistically defined reaches, both before and after extensive channel modification. Previous research has interpreted planform change in relation to geomorphological or engineering regime-type analyses of channel length and width for the LMR as a ,single system'. The analysis here is broadly consistent with these approaches, but highlights the importance of meander geometry, in the form of the radius of curvature:width ratio. This neglected factor helps resolve paradoxes relating to observed changes in sediment transport and channel stability. When viewed over smaller time and space scales, analysis of dynamics using fixed reach boundaries reveals a downstream trend in the pattern of planform behaviour, which is closely related to the distribution of valley floor deposits, and which also reflects neotectonic influences. Analysis of changes using statistically determined reach boundaries shows that, over shorter time scales, meander trains are continually formed and modified over a period of approximately 120 years. Zones of more-or-less dynamic behaviour thus move through the LMR. The research also provides a context for 20th century engineering interventions to the river. These have constrained the magnitude of planform adjustment, but also altered the kind of response that is now possible in relation to changes in discharge and sediment load, and as a consequence of internal feedbacks within the LMR system. Copyright © 2006 John Wiley & Sons, Ltd. [source]


    Predictability of river flow and suspended sediment transport in the Mississippi River basin: a non-linear deterministic approach

    EARTH SURFACE PROCESSES AND LANDFORMS, Issue 6 2005
    Bellie Sivakumar
    Abstract As the Mississippi River plays a major role in fulfilling various water demands in North America, accurate prediction of river flow and sediment transport in the basin is crucial for undertaking both short-term emergency measures and long-term management efforts. To this effect, the present study investigates the predictability of river flow and suspended sediment transport in the basin. As most of the existing approaches that link water discharge, suspended sediment concentration and suspended sediment load possess certain limitations (absence of consensus on linkages), this study employs an approach that presents predictions of a variable based on history of the variable alone. The approach, based on non-linear determinism, involves: (1) reconstruction of single-dimensional series in multi-dimensional phase-space for representing the underlying dynamics; and (2) use of the local approximation technique for prediction. For implementation, river flow and suspended sediment transport variables observed at the St. Louis (Missouri) station are studied. Specifically, daily water discharge, suspended sediment concentration and suspended sediment load data are analysed for their predictability and range, by making predictions from one day to ten days ahead. The results lead to the following conclusions: (1) extremely good one-day ahead predictions are possible for all the series; (2) prediction accuracy decreases with increasing lead time for all the series, but the decrease is much more significant for suspended sediment concentration and suspended sediment load; and (3) the number of mechanisms dominantly governing the dynamics is three for each of the series. Copyright © 2005 John Wiley & Sons, Ltd. [source]


    Aquatic photochemistry of chlorinated triclosan derivatives: Potential source of polychlorodibenzo- P -dioxins,

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 12 2009
    Jeffrey M. Buth
    Abstract Triclosan (TCS; 5-chloro-2-(2,4-dichlorophenoxy)phenol), a common antimicrobial agent, may react with residual chlorine in tap water during transport to wastewater treatment plants or during chlorine disinfection of wastewater, generating chlorinated TCS derivatives (CTDs): 4,5-dichloro-2-(2,4-dichlorophenoxy)phenol (4-Cl-TCS), 5,6-dichloro-2-(2,4-dichlorophenoxy)phenol (6-C1-TCS), and 4,5,6-trichloro-2-(2,4-dichlorophenoxy)phenol (4,6-Cl-TCS). The photochemistry of CTDs was investigated due to the potential formation of polychlorodibenzo- p -dioxin (PCDD) photoproducts. Photolysis rates were highly dependent upon CTD speciation, because the phenolate species degraded 44 to 586 times faster than the phenol forms. Photolysis quantum yield values for TCS, 4-Cl-TCS, 6-Cl-TCS, and 4,6-Cl-TCS of 0.39, 0.07, 0.29, and 0.05, respectively, were determined for the phenolate species. Photolyses performed in Mississippi River and Lake Josephine (USA) waters gave similar quantum yields as buffered, pure water at the same pH, indicating that indirect photolysis processes involving photosensitization of dissolved organic matter are not competitive with direct photolysis. The photochemical conversion of the three CTDs to PCDDs under solar irradiation was confirmed in natural and buffered, pure water at yields of 0.5 to 2.5%. The CTD-derived PCDDs possess higher toxicities than 2,8-dichlorodibenzo- p -dioxin, a previously identified photoproduct of TCS, due to their higher chlorine substitution in the lateral positions. The load of TCS- and CTD-derived PCDDs to United States surface waters is estimated to be between 46 and 92 g toxicity equivalent units per year. Other identified photoproducts of each CTD were 2,4-dichlorophenol and reductive dechlorination products. [source]


    Elevated organochlorines in the brain,hypothalamic,pituitary complex of intersexual shovelnose sturgeon

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 7 2006
    Brian T. Koch
    Abstract Organochlorine compounds (OCs), including polychlorinated biphenyls and organochlorine pesticides, were used on lands adjacent to the Middle Mississippi River (MMR; USA) from 1930 through 1988, and they continue to occur in MMR fish. These compounds are estrogenic and/or antiandrogenic, and they alter hormone production and reception within the brain and gonads of male fish, resulting in intersexuality and/or suppressed gonadal development. To assess how OCs affect reproduction of MMR fish, we quantified OC accumulation, intersexuality, and gonadal development in male shovelnose sturgeon (Scaphirhynchus platorynchus) throughout the MMR during the spring of 2003. Gonads were observed for intersexual characteristics, weighed to calculate the gonadosomatic index (GSI), and examined histologically. Tissue accumulation of OCs was quantified in gonads, brain,hypothalamic,pituitary (BHP) complex, and fillets. Four of 48 mature males were identified macroscopically as intersexuals, and a fifth was found through histology (a 10.4% incidence). Intersexuals accumulated higher concentrations of OCs in the BHP complex compared with those of mature males. In addition, GSI and OC accumulation within the BHP complex, gonads, and fillets of mature males were negatively related. Exposure to OCs before or during sexual differentiation likely induces intersexuality in MMR shovelnose sturgeon, and exposure throughout gonadal maturation inhibits gonadal development. [source]


    Influence of lateral gradients of hydrologic connectivity on trophic positions of fishes in the Upper Mississippi River

    FRESHWATER BIOLOGY, Issue 3 2009
    KATHERINE A. ROACH
    Summary 1. Riverscapes consist of the main channel and lateral slackwater habitats along a gradient of hydrological connectivity from maximum connection in main channel habitats to minimum connection in backwaters. Spatiotemporal differences in water currents along this gradient produce dynamic habitat conditions that influence species diversity, population densities and trophic interactions of fishes. 2. We examined the importance of lateral connectivity gradients for food web dynamics in the Upper Mississippi River during spring (high flow, moderately low temperatures) and summer (low flow, higher temperatures). We used literature information and gut contents analyses to determine feeding guilds and stable isotope analysis to estimate mean trophic position of local fish assemblages. During June and August 2006, we collected over 1000 tissue samples from four habitats (main channel, secondary channels, tertiary channels and backwaters) distributed within four hydrologic connectivity gradients. 3. Mean trophic position differed among feeding guilds and seasons, with highest values in spring. Mean trophic position of fish assemblages, variability in trophic position and food chain length (maximum trophic position) of the two dominant piscivore species (Micropterus salmoides and M. dolomieu) in both seasons were significantly associated with habitat along the lateral connectivity gradient. Food chain length peaked in tertiary channels in both seasons, probably due to higher species diversity of prey at these habitats. We infer that food chain length and trophic position of fish assemblages were lower in backwater habitats in the summer mainly because of the use of alternative food sources in these habitats. 4. A greater number of conspecifics exhibited significant among-habitat variation in trophic position during the summer, indicating that low river stages can constrain fish movements in the Upper Mississippi River. 5. Results of this study should provide a better understanding of the fundamental structure of large river ecosystems and an improved basis for river rehabilitation and management through knowledge of the importance of lateral complexity in rivers. [source]


    SHIFTING SYNANTHROPY OF THE CROW IN EASTERN NORTH AMERICA

    GEOGRAPHICAL REVIEW, Issue 2 2010
    DANIEL W. GADE
    abstract. The American crow (Corvus brachyrhynchos) falls into a category of wild organisms, called "synanthropes," that have developed an affinity for, or dependency on, human interventions in the landscape. The distribution and numbers of crows in North America east of the Mississippi River have been largely tied to the anthropogenic fragmentation of the forest. As ground feeders, crows need open space for foraging, but they also need trees for nesting and roosting. Conflicts between corvids and people centered on the former's damage to agriculture. Both Native American peoples and Euro-American settlers sought to thwart corvine preference for maize through a series of ingenious measures. After 1950 rural concern about corvine depredations greatly diminished. The appearance of large winter roosts in cities shifted the conflict with crows. Like humans, crows have undergone change, and their synanthropic character can be seen as fundamental to their biogeography. [source]


    A quarter century of declining suspended sediment fluxes in the Mississippi River and the effect of the 1993 flood,

    HYDROLOGICAL PROCESSES, Issue 1 2010
    Arthur J. Horowitz
    Abstract Annual fluxes, flow-weighted concentrations and linear least squares trendline calculations for a number of long-term Mississippi River Basin (MRB) sampling sites covering 1981 through 2007, whilst somewhat ,noisy', display long-term patterns of decline. Annual flow-weighted concentration plots display the same long-term patterns of decline, but are less noisy because they reduce/eliminate variations due to interannual discharge differences. The declines appear greatest in the middle MRB, but also are evident elsewhere. The pattern for the lower Ohio River differs and may reflect ongoing construction at the Olmsted lock and dam that began in 1993 and currently is ongoing. The ,Great Flood of 1993' appears to have superimposed a step function (a sharp drop) on the long-term rate of decline in suspended sediment concentrations (SSC), annual fluxes and flow-weighted concentrations in the middle MRB at St Louis and Thebes, Missouri and Vicksburg, Mississippi, and in the lower MRB at St Francisville, Louisiana. Evidence for a step function at other sites is less substantial, but may have occurred. The step function appears to have resulted from losses in available (erodible) sediment, rather than to a reduction in discharge; hence, the MRB appears to be supply limited rather than discharge limited. These evaluations support the need for daily discharge and SSC data collections in the MRB to better address questions regarding long-term trends in sediment-related issues. This is apparent when the results for the Mississippi River at Thebes and St Louis sites are compared with those from other MRB sites where intensive (daily) data collections are lacking. Published in 2009 by John Wiley & Sons, Ltd. [source]


    Similarities and differences in the historical development of flood management in the alluvial stretches of the Lower Mississippi Basin and the Rhine Basin,§

    IRRIGATION AND DRAINAGE, Issue S1 2006
    Dick de Bruin
    ingénierie hydraulique fluviale; développement historique des bassins du Rhin et du Mississippi inférieur; plaines alluviales Abstract Although the rivers Rhine and Mississippi cannot be compared as features of nature,the Mississippi River as a feature of nature is much bigger and more impressive than the Rhine,one can still observe striking similarities on flood management in both river basins, in particular in the alluvial flat reaches. But there are also some fundamental differences, not only technically but also institutionally. Since industrialization (around 1800), inland navigation became a major user on both river systems and later flood control started developing more fundamentally. Large intervention works were needed, mainly developed and based on trial and error. In both cases it has led to irreversible effects, which demand continuous attention. For the alluvial stretches in both river basins, a review is given on the most important developments in river engineering over the last two centuries. For both rivers, nautical management and flood control were held in one institutional hand at national/federal level, because both uses/sectors need the creation and regular maintenance of one similar issue: a stable and deep main channel. But the way in which in particular flood management gradually developed institutionally, as an essential part of integrated water management in the alluvial flat lower reaches of both river systems, has diverged. Discussions on financing, priorities, public disclosure, multifunctional aspects, etc. have led in both basins to lengthy procedures and complicated policy making. This paper elaborates on the historic development of fundamentals in river engineering and river management in the alluvial plains of the Rhine Basin and the Lower Mississippi Basin, more in particular focusing on the development of flood protection dikes, and on the stabilization of major channels. Copyright © 2006 John Wiley & Sons, Ltd. Bien que le Rhin et le Mississippi ne puissent pas être comparés en termes physiques,le Mississippi est beaucoup plus grand et impressionnant que le Rhin,on peut pourtant observer des similitudes saisissantes dans la protection contre les inondations des deux bassins, en particulier dans les plaines alluviales. Mais il existe également quelques différences fondamentales, non seulement techniques mais institutionnelles. Depuis les débuts de l'industrialisation (vers 1800), la navigation est devenue un usage très important sur les deux fleuves et la protection contre les inondations à commencer à se mettre en place de façon plus systématique. De grands travaux d'intervention ont été nécessaires, principalement basés sur la règle empirique de l'essai/erreur. Dans les deux cas, ceci a entraîné des effets irréversibles, qui nécessitent une surveillance permanente. Pour les plaines alluviales des deux bassins, l'article passe en revue la plupart des développements de l'ingénierie hydraulique fluviale des deux cent dernières années. Pour les deux fleuves, la gestion de la navigation et la protection contre les inondations ont été regroupées dans une même institution au niveau national/fédéral, parce que les deux usages/secteurs demandaient la création et l'entretien régulier d'une même infrastructure: un canal principal stable et profond. Mais la manière dont la protection contre les inondations s'est progressivement développée sur le plan institutionnel, comme élément essentiel de la gestion intégrée de l'eau dans les plaines alluviales des deux fleuves, s'est différenciée. Des débats sur le financement, les priorités, l'information du public, les aspects multi fonctionnels, etc., ont conduit les deux bassins à mettre en place des procédures lourdes et des prises de décision complexes. Cet article présente le développement historique des principes fondamentaux de l'hydraulique fluviale et de la gestion de fleuve dans les plaines alluviales du bassin du Rhin et du bassin inférieur du Mississippi, en mettant l'accent sur le développement des digues de protection et la stabilisation des canaux principaux. Copyright © 2006 John Wiley & Sons, Ltd. [source]


    Stock structure of pallid sturgeon analyzed with microsatellite loci

    JOURNAL OF APPLIED ICHTHYOLOGY, Issue 4 2007
    A. W. Schrey
    Summary Recovery efforts for the endangered pallid sturgeon (Scaphirhynchus albus) include supplementation of wild stocks with hatchery reared progeny. Identifying the extent of genetic stock structure, which has previously been detected in samples from the range extremes, will help to determine whether stock transfers might be harmful. DNA microsatellite genotypes were screened in pallid sturgeon from the upper Missouri River, lower Missouri River, middle Mississippi River and Atchafalaya River and analyzed using a combination of Bayesian model-based and more traditional F-statistic based methods to characterize genetic differentiation. Scaphirhynchus specimens were collected by researchers active in the recovery effort and genotypes were screened at 16 microsatellite loci. Because there is considerable genetic and morphological overlap between pallid sturgeon, shovelnose sturgeon, and their hybrids, a combination of morphological and genetic techniques were used to eliminate shovelnose and possible hybrids from the sample. Genetic differentiation was detected among samples (overall , = 0.050, P = 0.001). Pairwise ,, genetic distances, and Bayesian assignment testing reveal that pallid sturgeon from the upper Missouri River are the most distinct group with pairwise comparisons of pallid sturgeon among all the remaining samples exhibiting lower , values, higher genetic distances, and self assignment scores. Our results indicate that using local broodstock, when available, should be used for pallid sturgeon propagation. If local broodstock are not available, geographically proximate individuals would limit genetic differences between native and stocked individuals. [source]


    Phylogeography of the northern hogsucker, Hypentelium nigricans (Teleostei: Cypriniformes): genetic evidence for the existence of the ancient Teays River

    JOURNAL OF BIOGEOGRAPHY, Issue 8 2003
    Peter B. Berendzen
    Abstract Aim, To assess the roles of dispersal and vicariance in shaping the present distribution and diversity within Hypentelium nigricans, the northern hogsucker (Teleostei: Cypriniformes). Location, Eastern United States. Methods, Parsimony analyses, Bayesian analyses, pairwise genetic divergence and mismatch plots are used to examine patterns of genetic variation across H. nigricans. Results, Species relationships within the genus Hypentelium were consistent with previous hypotheses. However, relationships between haplotypes within H. nigricans revealed two deeply divergent groups, a clade containing haplotypes from the New and Roanoke rivers (Atlantic Slope) plus Interior Highlands and upper Mississippi River and a clade containing haplotypes from the Eastern Highlands, previously glaciated regions of the Ohio and Wabash rivers, and the Amite and Homochitto rivers of south-western Mississippi. Main conclusions, The phylogenetic history of Hypentelium was shaped by old vicariant events associated with erosion of the Blue Ridge and separation of the Mobile and Mississippi river basins. Within H. nigricans two clades existed prior to the Pleistocene; a widespread clade in the pre-glacial Teays-Mississippi River system and a clade in Cumberland and Tennessee rivers. Pleistocene events fragmented the Teays-Mississippi fauna. Following the retreat of the glaciers H. nigricans dispersed northward into previously glaciated regions. These patterns are replicated in other clades of fishes and are consistent with some of the predictions of Mayden's (Systematic Zoology, 37, 329, 1988) pre-Pleistocene vicariance hypothesis. [source]


    Phylogeography of the bigeye chub Hybopsis amblops (Teleostei: Cypriniformes): early Pleistocene diversification and post-glacial range expansion

    JOURNAL OF FISH BIOLOGY, Issue 8 2008
    P. B. Berendzen
    The bigeye chub, Hybopsis amblops, is a member of the Central Highlands ichthyofauna of eastern North America. Phylogenetic analyses of the H. amblops species group based on a 1059 bp fragment of the mitochondrial DNA cytochrome b gene did not recover a monophyletic group. The inclusion of Hybopsis hypsinotus in the species complex is questionable. Within H. amblops, five strongly supported clades were identified; two clades containing haplotypes from the Ozark Highlands and three clades containing haplotypes from the Eastern Highlands and previously glaciated regions of the Ohio and Wabash River drainages. Estimates of the timing of divergence indicated that prior to the onset of glaciation, vicariant events separated populations east and west of the Mississippi River. East of the Mississippi River glacial cycles associated with the blocking and rerouting of the Teays River system caused populations to be pushed southward into refugia of the upper Ohio River. Following the most recent Wisconsinan glaciation, populations expanded northward into previously glaciated regions and southward into the Cumberland River drainage. In the Ozarks, west of the Mississippi River, isolation of clades appears to be maintained by the lack of stream capture events between the upper Arkansas and the White River systems and a barrier formed by the Arkansas River. [source]


    A multi-proxy palaeoecological and palaeoclimatic record within full glacial lacustrine deposits, western Tennessee, USA,

    JOURNAL OF QUATERNARY SCIENCE, Issue 8 2009
    David A. Grimley
    Abstract The Fulton Section, along the Mississippi River in western Tennessee, USA, is a 1,km continuous exposure (,20,m vertically) of Quaternary fluvial and lacustrine deposits, inset within Eocene sediments and buried by thick loess. Fossiliferous slackwater lake sediments record maximum aggradation during the last two major glaciations, with deposition between ca. 190,140,ka and 24, 18 14C ka BP, based on amino acid and radiocarbon chronology, respectively. During the onset of full glacial conditions (ca. 24,22 14C ka BP), a relatively permanent shallow lake environment is indicated by ostracods, aquatic molluscs, and both pollen and macrofossils of aquatic plants. By 21.8 14C ka BP, increasing emergent plants, amphibious gastropods (Pomatiopsis) and heavier ,18O compositions suggest marsh-like conditions in a periodically drying lake. The surrounding uplands consisted of Picea,Pinus woodlands mixed with cool-temperate hardwoods (e.g. Quercus, Populus, Carya), grasses and herbs. More open conditions ensued ca. 20 14C ka BP, with loess and slopewash gradually infilling the former lake by 18 14C ka BP. Modern analogue analyses of ostracods and palaeontological evidence imply a full glacial climate similar to today's mixed-boreal zone in central Minnesota, USA, about 9°C cooler in mean annual temperature than present-day western Tennessee. Copyright © 2009 John Wiley & Sons, Ltd. [source]


    NUTRIENTS DISCHARGED TO THE MISSISSIPPI RIVER FROM EASTERN IOWA WATERSHEDS, 1996.1997,

    JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 1 2000
    Kent D. Becher
    ABSTRACT: The introduction of nutrients from chemical fertilizer, animal manure, wastewater, and atmospheric deposition to the eastern Iowa environment creates a large potential for nutrient transport in watersheds. Agriculture constitutes 93 percent of all land use in eastern Iowa. As part of the U.S. Geological Survey National Water Quality Assessment Program, water samples were collected (typically monthly) from six small and six large watersheds in eastern Iowa between March 1996 and September 1997. A Geographic Information System (GIS) was used to determine land use and quantify inputs of nitrogen and phosphorus within the study area. Streamliow from the watersheds is to the Mississippi River. Chemical fertilizer and animal manure account for 92 percent of the estimated total nitrogen and 99.9 percent of the estimated total phosphorus input in the study area. Total nitrogen and total phosphorus loads for 1996 were estimated for nine of the 12 rivers and creeks using a minimum variance unbiased estimator model. A seasonal pattern of concentrations and loads was observed. The greatest concentrations and loads occur in the late spring to early summer in conjunction with row-crop fertilizer applications and spring nmoff and again in the late fall to early winter as vegetation goes into dormancy and additional fertilizer is applied to row-crop fields. The three largest rivers in eastern Iowa transported an estimated total of 79,000 metric tons of total nitrogen and 6,800 metric tons of total phosphorus to the Mississippi River in 1996. The estimated mass of total nitrogen and total phosphorus transported to the Mississippi River represents about 19 percent of all estimated nitrogen and 9 percent of all estimated phosphorus input to the study area. [source]


    A deterministic approach to evaluate and implement monitored natural attenuation for chlorinated solvents

    REMEDIATION, Issue 4 2007
    Michael J. Truex
    A US EPA directive and related technical protocol outline the information needed to determine if monitored natural attenuation (MNA) for chlorinated solvents is a suitable remedy for a site. For some sites, conditions such as complex hydrology or perturbation of the contaminant plume caused by an existing remediation technology (e.g., pump-and-treat) make evaluation of MNA using only field data difficult. In these cases, a deterministic approach using reactive transport modeling can provide a technical basis to estimate how the plume will change and whether it can be expected to stabilize in the future and meet remediation goals. This type of approach was applied at the Petro-Processors Inc. Brooklawn site near Baton Rouge, Louisiana, to evaluate and implement MNA. This site consists of a multicomponent nonaqueous-phase source area creating a dissolved groundwater contamination plume in alluvial material near the Mississippi River. The hydraulic gradient of the groundwater varies seasonally with changes in the river stage. Due to the transient nature of the hydraulic gradient and the impact of a hydraulic containment system operated at the site for six years, direct field measurements could not be used to estimate natural attenuation processes. Reactive transport of contaminants were modeled using the RT3D code to estimate whether MNA has the potential to meet the site-specific remediation goals and the requirements of the US EPA Office of Solid Waste and Emergency Response Directive 9200.4-17P. Modeling results were incorporated into the long-term monitoring plan as a basis for evaluating the effectiveness of the MNA remedy. As part of the long-term monitoring plan, monitoring data will be compared to predictive simulation results to evaluate whether the plume is changing over time as predicted and can be expected to stabilize and meet remediation goals. This deterministic approach was used to support acceptance of MNA as a remedy. © 2007 Wiley Periodicals, Inc. [source]


    Estimating population size and habitat associations of two federally endangered mussels in the St. Croix River, Minnesota and Wisconsin, USA,

    AQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, Issue 3 2010
    Daniel J. Hornbach
    Abstract 1.North America is a globally important centre of freshwater mussel biodiversity. Accurate population estimates and descriptions of critical habitat for endangered species of mussels are needed but are hindered by their patchy distribution and the dynamic nature of their habitat. Adaptive cluster sampling (ACS) was used to estimate population size and habitat associations of two federally endangered species, Higgins eye (Lampsilis higginsii) and winged mapleleaf (Quadrula fragosa), in the St. Croix River. 2.This river holds the largest known winged mapleleaf population in the upper Mississippi River and contains Essential Habitat Areas for Higgins eye. Winged mapleleaf density ranged from 0.008,0.020 individuals m,2 (coefficient of variation=50,66%), yielding an estimate of 13 000 winged mapleleaf in this reach of the river. Higgins eye density varied from 0.008,0.015 individuals m,2 (coefficient of variation=66,167%) giving an estimate of 14 400 individuals in this area. 3.Higgins eye and winged mapleleaf were associated with areas of the overall highest mussel density and species richness, suggesting these endangered species occur in ,premier' mussel habitat. There were no differences in many microhabitat factors for sites with and without either endangered species. Select hydraulic measures (such as shear velocity and shear stress) showed significant differences in areas with and without the winged mapleleaf but not for Higgins eye. Areas that are less depositional support dense and diverse mussel assemblages that include both endangered species, with winged mapleleaf having a narrower habitat range than Higgins eye. 4.This study suggests that ACS can provide statistically robust estimates of density with 2,3 times more efficiency than simple random sampling. ACS, however, was quite time consuming. This work confirmed that of others demonstrating that larger-scale hydraulic parameters might be better predictors of prime mussel habitat than fine-scaled microhabitat factors. Using hydraulic measures may allow improved identification of potentially critical mussel habitat. Copyright © 2009 John Wiley & Sons, Ltd. [source]