Home About us Contact | |||
Mises Stress (mise + stress)
Kinds of Mises Stress Selected AbstractsA comparison between new adaptive remeshing strategies based on point wise stress error estimation and energy norm error estimationINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, Issue 7 2002G. Bugeda Abstract Traditionally, the most commonly used mesh adaptive strategies for linear elastic problems are based on the use of an energy norm for the measurement of the error, and a mesh refinement strategy based on the equal distribution of the error between all the elements. However, little attention has been paid to the study of alternative error norms and alternative refinement strategies. This paper studies the feasibility of using alternative mesh refinement strategies based on , the use of the classical error energy norm and an optimality criterion based on the equal distribution of the density of error, , the use of alternative error norms based on measurements of the point wise error contained in the main magnitudes that control the equilibrium problem and/or the material constitutive equations such as the stresses (e.g. the Von Mises stress). The feasibility of using all the described strategies is demonstrated through the solution of a benchmark example. This example is also used for comparison between the described refinement criteria. Copyright © 2002 John Wiley & Sons, Ltd. [source] Topology optimization by a neighbourhood search method based on efficient sensitivity calculationsINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 12 2006K. Svanberg Abstract This paper deals with topology optimization of discretized load-carrying continuum structures, where the design of the structure is represented by binary design variables indicating material or void in the various finite elements. Efficient exact methods for discrete sensitivity calculations are developed. They utilize the fact that if just one or two binary variables are changed to their opposite binary values then the new stiffness matrix is essentially just a low-rank modification of the old stiffness matrix, even if some nodes in the structure may disappear or re-enter. As an application of these efficient sensitivity calculations, a new neighbourhood search method is presented, implemented, and applied on some test problems, one of them with 6912 nine-node finite elements where the von Mises stress in each non-void element is considered. Copyright © 2006 John Wiley & Sons, Ltd. [source] Stress analysis of the anterior tibial post in posterior stabilized knee prosthesesJOURNAL OF ORTHOPAEDIC RESEARCH, Issue 4 2007Chang-Hung Huang Abstract Recent retrieval studies have indicated a high incidence of polyethylene wear on the anterior tibial post caused by impingement. This study investigated the influences of post-cam design features and component alignment on the stress distribution in the anterior tibial post when subjected to the impingement loading. Two three-dimensional finite element models of posterior stabilized knee prostheses were constructed, one with flat on flat (FF) and another with curve on curve (CC) contact surfaces between anterior tibial post and femoral cam. The polyethylene insert was modeled with elastoplastic properties. Nine cases, three hyperextension angles (0°, 5°, and 10°) combined with three axial tibial rotations (0°, 2.5°, and 5°) simulating different component alignments were analyzed. A vertical compressive load of 2,000 N and an extension moment of 45 Nm were applied simultaneously. The FF model had larger stress increases than the CC model in both hyperextension and tibial rotation compared with the neutral position. The maximum increase for the FF model was 68% in peak contact stress, 125% in von Mises stress, and 58% in tensile stress in the extreme case of 10° of hyperextension combined with 5° of axial rotation. Stress concentration was found at the anterior corner of the post in the FF model; this was not found in the CC model. The curve on curve design can reduce edge loading on the tibial post, especially during axial tibiofemoral rotation. © 2007 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 25:442,449, 2007 [source] Influence of Material of Overdenture-Retaining Bar with Vertical Misfit on Three-Dimensional Stress DistributionJOURNAL OF PROSTHODONTICS, Issue 6 2010Ricardo T. Abreu DDS Abstract Purpose: This study evaluated the effects of different bar materials on stress distribution in an overdenture-retaining bar system with a vertical misfit between implant and bar framework. Materials and Methods: A three-dimentional finite element model was created including two titanium implants and a bar framework placed in the anterior part of a severely reabsorbed jaw. The model set was exported to mechanical simulation software, where displacement was applied to simulate the screw torque limited by 100-,m vertical misfit. Four bar materials (gold alloy, silver-palladium alloy, commercially pure titanium, cobalt-chromium alloy) were simulated in the analysis. Data were qualitatively evaluated using Von Mises stress given by the software. Results: The models showed stress concentration in cortical bone corresponding to the cervical part of the implant, and in cancellous bone corresponding to the apical part of the implant; however, in these regions few changes were observed in the levels of stress on the different bar materials analyzed. In the bar framework, screw, and implant, considerable increase in stress was observed when the elastic modulus of the bar material was increased. Conclusions: The different materials of the overdenture-retaining bar did not present considerable influence on the stress levels in the periimplant bone tissue, while the mechanical components of the system were more sensitive to the material stiffness. [source] Micromotion and Stress Distribution of Immediate Loaded Implants: A Finite Element AnalysisCLINICAL IMPLANT DENTISTRY AND RELATED RESEARCH, Issue 4 2009A. Fazel DDS ABSTRACT Background: Primary stability and micromotion of the implant fixture is mostly influenced by its macrodesign. Purpose: To assess and compare the peri-implant stress distribution and micromotion of two types of immediate loading implants, immediate loaded screw (ILS) Nisastan and Xive (DENTSPLY/Friadent, Monnheim, Germany), and to determine the best macrodesign of these two implants by finite element analysis. Methods: In this experimental study, the accurate pictures of two fixtures (ILS: height = 13, diameter = 4 mm and Xive: height = 13, diameter = 3.8 mm) were taken by a new digital camera (Nikon Coolpix 5700 [Nikon, Japan], resolution = 5.24 megapixel, lens = 8× optical, 4× digital zoom). Following accurate measurements, the three-dimensional finite element computer model was simulated and inserted in simulated mandibular bone (D2) in SolidWorks 2003 (SolidWork Corp., MA, USA) and Ansys 7.1 (Ansys, Inc., Canonsburg, PA, USA). After loading (500 N, 75° above horizon), the displacement was displayed and von Mises stress was recorded. Results: It was found that the primary stability of ILS was greater (152 µm) than Xive (284 µm). ILS exhibited more favorable stress distribution. Maximum stress concentration found in periapical bone around Xive (,30 MPa) was lesser than Nisastan (,37 MPa). Conclusions: Macrodesign of ILS leads to better primary stability and stress distribution. Maximum stress around Xive was less. [source] The three-dimension finite element analysis of stress in posterior tooth residual root restored with postcore crownDENTAL TRAUMATOLOGY, Issue 1 2010Gang Fu Some researchers have analyzed the stress of the anterior teeth after postcore crown restoration, but the stress of the posterior teeth after such restoration has not been reported. We used three-dimension finite element methods to analyze the stress magnitude and distribution of remaining dentin in posterior tooth residual root restored with postcore crown. The binding material, loading direction, number, length and material of posts were studied. Methods:, The models of residual root of maxillary first molar restored with postcore crown were created by CT scanning, mimics software and abaqus software. Different number, length and material of posts were used in the modeling. The posts were cemented with zinc-phosphate cement or composited resin. A load of 240 N was applied to the occlusal surface in four directions and tensile, shear, and von Mises stresses were calculated. Result:, (i) The maximum stress on remaining dentin changed irregularly as the number and length of posts changed. (ii) The maximum stress on remaining dentin decreased slightly as elastic modulus of the material of posts increased. (iii) The maximum stress on bonding layer and remaining dentin was lower when bonded with resin luting agent than with zinc-phosphate cement. (iv) The maximum stress on remaining dentin increased markedly as loading angle increased. Conclusion:, The number, length, material of posts, bonding material and loading angle all have influence on the magnitude and distribution of stress. The influence of loading angle is most apparent. [source] Force transmission of one- and two-piece morse-taper oral implants: a nonlinear finite element analysisCLINICAL ORAL IMPLANTS RESEARCH, Issue 4 2004Murat Cavit Çehreli Abstract Purpose: To compare force transmission behaviors of one-piece (1-P) and two-piece (2-P) morse-taper oral implants. Material and methods: A three-dimensional finite element model of a morse-taper oral implant and a solid abutment was constructed separately. The implant,abutment complex was embedded in a Ø 1.5 cm × 1.5 cm acrylic resin cylinder. Vertical and oblique forces of 50 N and 100 N were applied on the abutment and solved by two different analyses. First, contact analysis was performed in the implant,abutment complex to evaluate a 2-P implant. Then, the components were bonded with a separation force of 1020 N to analyze a 1-P implant. Results: Von Mises stresses in the implant, principal stresses, and displacements in the resin were the same for both designs under vertical loading. Under oblique loading, principal stresses and displacement values in the resin were the same, but the magnitudes of Von Mises stresses were higher in the 2-P implant. The principal stress distributions around both implants in the acrylic bone were similar under both loading conditions. Conclusion: 2-P implants experience higher mechanical stress under oblique loading. Nevertheless, the 1-P- or 2-P morse-taper nature of an implant is not a decisive factor for the magnitude and distribution of stresses, and displacements in supporting tissues. Résumé Le but de cette étude a été de comparer les comportements de la transmission de la force desimplants buccaux en deux pièces. Un modèle d'éléments finis tridimensionnels d'un implant buccal et d'un pilier solide ont été construits séparément. Le complexe implant/pilier a été enfoui dans un cylindre de résine acrylique d'un diamètre 1,5 × 1,5 cm. Des forces obliques et verticales de 50 et 100 N ont été appliquées sur les piliers et analysées par deux méthodes. D'abord, l'analyse de contraste a été effectuée dans le complexe implant/pilier pour évaluer un implant en deux pièces. Ensuite, les composants ont été reliés avec une force de séparation de 1020N pour analyser un implant en une pièce. Les stress de Von Mises dans l'implant, les principaux stress et les déplacements dans la résine étaient les mêmes pour les deux modèles sous charge verticale. Lorsqu'une charge oblique était appliquée, les stress principaux et les valeurs de déplacements dans la résine étaient semblables mais l'amplitude des stress de Von Mises était plus importante dans l'implant à deux pièces. Les distributions des stress principaux autour des deux implants dans l'os acrylique était semblable sous les deux conditions de charge. Les implants en deux pièces subissent un stress mécanique plus important sous une charge oblique. Cependant, l'implant en une ou deux pièces avec un cône morse n'est pas un facteur décisif sur l'amplitude et la distribution des stress, et les déplacements des tissus de support. Zusammenfassung Ziel: Die Kraftübertragungsverhältnisse von ein- und zweiteiligen oralen Implantaten mit konischem Sitz der Sekundärteile zu untersuchen. Material und Methode: Es wurde je ein separates dreidimensionales Finite Element Modell eines oralen Implantats mit konischem Sitz der Sekundärteile und ein Massivsekundärteil konstruiert. Der Implantat-Sekundärteilkomplex wurde in einem Zylinder aus Acryl mit Durchmesser 1.5cm und Länge 1.5cm eingebettet. Vertikale und schräge Kräfte von 50 N und 100 N wurden auf das Sekundärteil appliziert und durch zwei verschiedene Analysen ausgewertet. Zuerst wurde eine Kontaktanalyse im Implantat-Sekundärteilkomplex zur Auswertung eines zweiteiligen Implantats durchgeführt. Dann wurden die Komponenten mit einer Separationskraft von 1020 N verbunden, um ein einteiliges Implantat zu analysieren. Resultate: Unter vertikaler Belastung waren der Van Mises Stress im Implantat, der generelle Stress und die Displatzierung im Kunststoff für beide Konstruktionen gleich. Unter schräger Belastung waren der generelle Stress und die Displatzierungswerte im Kunststoff die gleichen, jedoch war das Ausmass des von Mises Stress im zweiteiligen Implantat grösser. Die generelle Stressverteilung im Akrylknochen um die Implantate war unter beiden Belastungsbedingungen ähnlich. Schlussfolgerung: Zweiteilige Implantate erleiden grösseren mechanischen Stress unter schräger Belastung. Jedoch ist die ein- oder zweiteilige Konstruktion mit konischem Sitz der Sekundärteile bei Implantaten kein entscheidender Faktor für das Ausmass und die Verteilung des Stresses und für die Displatzierung in den Verankerungsgeweben. Resumen Intención: Comparar los comportamientos de transmisión de fuerzas de implantes orales en cono morse de una o dos piezas. Material y métodos: Se construyeron separadamente un modelo tridimensional de elemento finito de un implante oral de cono morse y un pilar sólido. El complejo implante-pilar se embebió en un cilindro de resina acrílica de , 1.5 cm × 1.5 cm. Se aplicaron fuerzas oblicuas de 50 N y 100 N sobre el pilar y se resolvieron por medio de dos análisis diferentes. Primero, se llevó a cabo un análisis de contacto en el complejo implante-pilar para evaluar un implante de dos piezas. Después, se unieron los componentes con una fuerza de separación de 1020 N para analizar un implante de una sola pieza. Resultados: El estrés de Von Mises, el estrés principal, y el desplazamiento en la resina fueron los mismos para ambos diseños bajo carga vertical. Bajo carga oblicua, los valores de estrés principal y desplazamiento en resina fueron los mismos, pero la magnitud de los estreses de Von Mises fueron mayores en los implantes de dos piezas. Las distribuciones del estrés principal alrededor de ambos implantes in el hueso acrílico fueron similares bajo ambas condiciones de carga. Conclusión: Los implantes de dos piezas experimentan un estrés mecánico mas alto bajo carga oblicua. Sin embargo, la naturaleza de un implante de cono morse de una o dos piezas no es un factor decisivo en la magnitud y distribución de los estreses, y desplazamientos en los tejidos de soporte. [source] |