Minimal Change Disease (minimal + change_disease)

Distribution by Scientific Domains


Selected Abstracts


MINIMAL CHANGE DISEASE AND ACUTE TUBULAR NECROSIS CAUSED BY DICLOFENAC

NEPHROLOGY, Issue 1 2008
KRESIMIR GALESIC
[source]


ACUTE KIDNEY INJURY COMPLICATING MINIMAL CHANGE DISEASE: THE CASE FOR CAREFUL USE OF DIURETICS AND ANGIOTENSIN-CONVERTING ENZYME INHIBITORS

NEPHROLOGY, Issue 5 2007
RAJESH YALAVARTHY
[source]


Ultrastructural lesions in a case of nephrotic syndrome (minimal change disease)

JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 2 2001
Mihaela Gherghiceanu
No abstract is available for this article. [source]


Urinary proteins from patients with nephrotic syndrome alters the signalling proteins regulating epithelial,mesenchymal transition

NEPHROLOGY, Issue 1 2010
QIONG WEN
ABSTRACT: Aim: Proteinuria plays an important role in the progression of tubulointerstitial fibrosis, but the mechanism for the differential renal damage induced by proteinuria is unknown. This study examined the effects of urinary proteins from patients with idiopathic minimal change disease (MCD) and focal segmental glomerulosclerosis (FSGS) on several epithelial,mesenchymal transition (EMT)-related marker proteins in cultured proximal tubular HK-2 cells. Methods: Urinary proteins from MCD and FSGS patients were extracted by ultrafiltration and incubated with HK-2 cells; the expression of the cytokeratin-18, ,-smooth muscle actin (,-SMA) and vimentin were assessed. p38 and extracellular regulated kinase (ERK) activation were measured by western blotting, and SB203580 (a p38 inhibitor) and PD98059 (an ERK1/2 inhibitor) were used to inhibit their activation. Results: It was observed that urinary proteins from FSGS patients more significantly induced the expression of ,-SMA and vimentin and reduced cytokeratin-18 expression than those from MCD patients in HK-2 cells. Both ERK1/2 and p38 were activated by urinary proteins from MCD or FSGS patients. Pretreatment of the cells with SB203580 or PD98059 abolished the effect of urinary proteins from FSGS patients on the expression of ,-SMA, vimentin and cytokeratin-18, while only SB203580 elicited this effect when cells were treated with urinary proteins from MCD patients. Conclusion: The urinary proteins from MCD and FSGS patients induced significant changes of EMT-related proteins through activation of distinct mitogen-activated protein kinase-related signalling pathways. Quality of proteinuria may play an important role in determining the severity and progression of tubular injury associated with different kidney diseases. [source]


Glomerular and tubular induction of the transcription factor c-Jun in human renal disease,

THE JOURNAL OF PATHOLOGY, Issue 2 2007
MH De Borst
Abstract The transcription factor c-Jun regulates the expression of genes involved in proliferation and inflammation in many cell types but its role in human renal disease is largely unclear. In the current study we investigated whether c-Jun activation is associated with human renal disease and if c-Jun activation regulates pro-inflammatory and pro-fibrotic genes in renal cells. Activation of c-Jun was quantified by scoring renal expression of phosphorylated c-Jun (pc-Jun) in control human renal tissue and in biopsies from patients with various renal diseases (diabetic nephropathy, focal glomerulosclerosis, hypertension, IgA nephropathy, membranous glomerulopathy, minimal change disease, membranoproliferative glomerulonephritis, systemic lupus erythematosus, acute rejection, and Wegener's granulomatosis); this was correlated with parameters of renal damage. Furthermore, we studied the functional role of c-Jun activation in human tubular epithelial cells (HK-2) stimulated with TGF-,. Activated c-Jun was present in nuclei of glomerular and tubular cells in all human renal diseases, but only sporadically in controls. Across the diseases, the extent of pc-Jun expression correlated with the degree of focal glomerulosclerosis, interstitial fibrosis, cell proliferation, kidney injury molecule-1 (Kim-1) expression, macrophage accumulation, and impairment of renal function. In HK-2 cells, TGF-, induced c-Jun activation after 1 h (+40%, p < 0.001) and 24 h (+160%, p < 0.001). The specific c-Jun N-terminal kinase (JNK) inhibitor SP600125 abolished c-Jun phosphorylation at all time points and blunted TGF-,- or BSA-induced procollagen-1, 1 and MCP-1 gene expression in HK-2 cells. We conclude that in human renal disease, the transcription factor c-Jun is activated in glomerular and tubular cells. Activation of c-Jun may be involved in the regulation of inflammation and/or fibrosis in human renal disease. Copyright © 2007 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. [source]