Mineralizing Surface (mineralizing + surface)

Distribution by Scientific Domains


Selected Abstracts


Treatment of Skeletally Mature Ovariectomized Rhesus Monkeys With PTH(1-84) for 16 Months Increases Bone Formation and Density and Improves Trabecular Architecture and Biomechanical Properties at the Lumbar Spine,

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 2 2007
John Fox PhD
Abstract Histomorphometric studies of treatments for osteoporosis in humans are restricted to iliac crest biopsies. We studied the effects of PTH(1-84) treatment at the lumbar spine of skeletally mature ovariectomized rhesus monkeys. PTH increased bone turnover, rapidly normalized BMD, and increased vertebral compressive strength. PTH increased trabecular bone volume primarily by increasing trabecular number by markedly increasing intratrabecular tunneling. Introduction: Histomorphometric studies of the anabolic properties of PTH(1-84) (PTH) and related peptides in human bone are restricted to iliac crest biopsies. The ovariectomized (OVX) monkey is an accepted model of human postmenopausal bone loss and was used to study the effects of PTH treatment at clinically relevant skeletal sites. Materials and Methods: Skeletally mature rhesus monkeys were OVX or sham-operated and, after a bone depletion period of 9 months, treated daily for 16 months with PTH (5, 10, or 25 ,g/kg). Markers of bone formation (serum osteocalcin) and resorption (urine N-telopeptide [NTX]) and lumbar spine BMD were measured throughout the study. Trabecular architecture and vertebral biomechanical properties were quantified at 16 months. Results: PTH treatment induced dose-dependent increases in bone turnover but did not increase serum calcium. Osteocalcin was significantly increased above OVX controls by 1 month. NTX was significantly elevated at 1 month with the highest dose, but not until 12 months with the 5 and 10 ,g/kg doses. Lumbar spine BMD was 5% lower in OVX than in sham animals when treatment was started. All PTH doses increased BMD rapidly, with sham levels restored by 3,7 months with 10 and 25 ,g/kg and by 16 months with 5 ,g/kg. PTH treatment increased trabecular bone volume (BV/TV), primarily by increasing trabecular number, and dose-dependently increased bone formation rate (BFR) solely by increasing mineralizing surface. The largest effects on BV/TV and yield load occurred with the 10 ,g/kg dose. The highest dose reduced trabecular thickness by markedly increasing intratrabecular tunneling. Conclusions: PTH treatment of OVX rhesus monkeys increased bone turnover and increased BV/TV, BMD, and strength at the lumbar spine. All PTH doses were safe, but the 10 ,g/kg dose was generally optimal, possibly because the highest dose resulted in too marked a stimulation of bone remodeling. [source]


High-Turnover Periprosthetic Bone Remodeling and Immature Bone Formation Around Loose Cemented Total Hip Joints

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 1 2001
Michiaki Takagi
Abstract Aseptic loosening and periprosthetic osteolysis are the major problems awaiting solution in total hip surgery. The clinical investigation focused on the analysis of periprosthetic bone remodeling to clarify one important key event in the cascade of periprosthetic connective tissue weakening and osteolysis around loose artificial hip joints. Twelve acetabular bone samples adjacent to granulomatous synovial-like membrane of loose hip prosthesis were retrieved at revision surgery and processed for Villanueva bone staining for morphological observation and bone histomorphometric analysis. Eight well-fixed bony samples were used as control. Although osteoclastic surface and eroded surface by osteoclasts were evident in the periprosthetic bone from loose hip joints (p = 0.003 and p = 0.027), increased osteoid/low-mineralized bone matrix (p < 0.001) and osteoid width (p < 0.001) also were significant findings in structural analysis. In addition, not only elevated mineral apposition rate (MAR; p = 0.044) but also increased mineralizing surface (p = 0.044) and bone formation rate (BFR; p = 0.002) in loose periprosthetic bones were shown in dynamic data analysis. These results were confirmed by precise morphological observation by confocal laser scanning microscopy. Active coupling of bone formation and resorption and increased osteocytes with abundant bone canalicular projections were found in combined with the presence of immature bone matrices (osteoid and low-mineralized bone areas) in periprosthetic bones from loose hip joints. These results indicated that active osteoclastic bone resorption and/or defective bone formation are coupled with monocyte/macrophage-mediated foreign body-type granuloma in the synovial-like interface membrane of loose hip joints. Thus, this unique high-turnover periprosthetic bone remodeling with bad bone quality probably is caused by the result of cellular host response combined with inappropriate cyclic mechanical loading. The fragile periprosthetic bone may contribute to hip prosthesis loosening. [source]


Intermittently Administered Human Parathyroid Hormone(1,34) Treatment Increases Intracortical Bone Turnover and Porosity Without Reducing Bone Strength in the Humerus of Ovariectomized Cynomolgus Monkeys

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 1 2001
David B. Burr
Abstract Cortical porosity in patients with hyperparathyroidism has raised the concern that intermittent parathyroid hormone (PTH) given to treat osteoporotic patients may weaken cortical bone by increasing its porosity. We hypothesized that treatment of ovariectomized (OVX) cynomolgus monkeys for up to 18 months with recombinant human PTH(1,34) [hPTH(1,34)] LY333334 would significantly increase porosity in the midshaft of the humerus but would not have a significant effect on the strength or stiffness of the humerus. We also hypothesized that withdrawal of PTH for 6 months after a 12-month treatment period would return porosity to control OVX values. OVX female cynomolgus monkeys were given once daily subcutaneous (sc) injections of recombinant hPTH(1,34) LY333334 at 1.0 ,g/kg (PTH1), 5.0 ,g/kg (PTH5), or 0.1 ml/kg per day of phosphate-buffered saline (OVX). Sham OVX animals (sham) were also given vehicle. After 12 months, PTH treatment was withdrawn from half of the monkeys in each treatment group (PTH1-W and PTH5-W), and they were treated for the remaining 6 months with vehicle. Double calcein labels were given before death at 18 months. After death, static and dynamic histomorphometric measurements were made intracortically and on periosteal and endocortical surfaces of sections from the middiaphysis of the left humerus. Bone mechanical properties were measured in the right humeral middiaphysis. PTH dose dependently increased intracortical porosity. However, the increased porosity did not have a significant detrimental effect on the mechanical properties of the bone. Most porosity was concentrated near the endocortical surface where its mechanical effect is small. In PTH5 monkeys, cortical area (Ct.Ar) and cortical thickness (Ct.Th) increased because of a significantly increased endocortical mineralizing surface. After withdrawal of treatment, porosity in PTH1-W animals declined to sham values, but porosity in PTH5-W animals remained significantly elevated compared with OVX and sham. We conclude that intermittently administered PTH(1,34) increases intracortical porosity in a dose-dependent manner but does not reduce the strength or stiffness of cortical bone. [source]


Tissue reaction to orthodontic tooth movement in different bone turnover conditions

ORTHODONTICS & CRANIOFACIAL RESEARCH, Issue 3 2003
C. Verna
Structured Abstract Authors , Verna C, Melsen B Objectives , To study the tissue reaction to orthodontic load in normal, high, and low bone turnover states. Design , ,Split mouth' design performing orthodontic tooth movement in 52, 6-month-old male rats with: normal (n = 19), high (n = 16), and low bone turnover (n = 17), the latter two being obtained by induction of hyperthyroidism and hypothyroidism, respectively. Performed at the Department of Orthodontics at Aarhus University. Experimental Variable , The upper left first molar was moved for 21 days. Bone markers were administered 7 and 2 days before killing. Histological sections were cut at the coronal and apical levels. Outcome Measure , Alveolar socket area, periodontal ligament width, the relative extension of alveolar wall with erosion surfaces, and the mineralizing surfaces were measured and compared in the three groups. Results , Alveolar socket, periodontal ligament width, and erosion surface were larger on the treated than on the control side in the three groups. The normal and hypothyroid groups showed a wider periodontal ligament at the bucco-distal site at the coronal level, while the hyperthyroid group showed a widening which was not spatially oriented. The normal and hyperthyroid groups showed higher erosion at the corono-mesial site. The mineralizing surfaces were larger on the treated than on the control side in the normal and hypothyroid groups, but not in the hyperthyroid group. Conclusion , In the hyperthyroid group, the widening of the periodontal ligament was not spatially oriented and the increased erosion was not accompanied by increased formation, as observed in the normal and hypothyroid groups. [source]