Mineralization Process (mineralization + process)

Distribution by Scientific Domains


Selected Abstracts


Immunocytochemical characterization of ectopic enamel deposits and cementicles in human teeth

EUROPEAN JOURNAL OF ORAL SCIENCES, Issue 1 2003
Dieter D. Bosshardt
Despite the relative frequency and clinical relevance of radicular enamel deposits and cementicles, their etiology and nature are unknown. The purpose of the present study was therefore to evaluate the presence and distribution of mineralization-associated non-collagenous matrix proteins (NCPs) in various types of root-associated ectopic mineralizations. Human teeth were processed for embedding in epoxy or acrylic resins. Tissue sections were incubated with antibodies to amelogenins (AMEL), bone sialoprotein (BSP), and osteopontin (OPN). Radicular enamel deposits contained residual organic matrix that labeled for AMEL. In contrast, BSP and OPN were not detected in the residual enamel matrix, they were found in the cementum deposited on its surface as well as in collagen-free cementicle-like structures in the adjacent periodontal ligament. True cementicles consisted of a collagenous matrix intermixed with a non-collagenous ground substance. Labeling for BSP and OPN was mainly associated with the interfibrillar ground substance. No immunoreactivity for AMEL was detected in cementicles. These data indicate that ectopic enamel deposits on the root retain a high amount of AMEL, whereas cementicles contain BSP and OPN, two NCPs typically found in bone and cementum. These NCPs may, like in their normal tissue counterparts, play a role in the mineralization process. [source]


On the origin of intrinsic matrix of acellular extrinsic fiber cementum: Studies on growing cementum pearls of normal and bisphosphonate-affected guinea pig molars

EUROPEAN JOURNAL OF ORAL SCIENCES, Issue 3 2002
Chantha K. Jayawardena
Cementum pearls (CPs) belong to a type of acellular extrinsic fiber cementum (AEFC) that form on the maturing enamel of guinea pig molars. This study aimed to elucidate the forming process of intrinsic matrix of AEFC using the CPs of normal and bisphosphonate-affected guinea pig molars as experimental models. A group of guinea pigs were subjected to continuous administration of 1-hydroxyethylidene-1,1-bisphosphonate (HEBP) for 2 wk to inhibit mineralization of growing CPs. Fenestration of the enamel organ and migration of periodontal cells on to the exposed surface of maturing enamel appeared to be unaffected by HEBP, whereas de novo formation as well as growth of pre-existing CPs did not proceed under the same conditions. Immunoreactions for osteopontin were located exclusively on the mineralized matrix of preformed CPs, implying the absence of additional deposition or accumulation of putative intrinsic cementum matrix on the affected CPs, where the propagation of mineral phase had been arrested. In both normal and HEBP-treated groups, distinct enzymatic reactions for alkaline phosphatase appeared on the cells of the periodontal ligament associated closely with the sites of CP formation, and along the mineralization front of CPs. These observations suggest that the mineralization process per se plays a central role in the deposition of AEFC matrix and that alkaline phosphatase of periodontal cells penetrating through the enamel organ to the maturing enamel surface plays a key role in the mineralization process of CPs. [source]


Amorphous Calcium Carbonate is Stabilized in Confinement

ADVANCED FUNCTIONAL MATERIALS, Issue 13 2010
Christopher J. Stephens
Abstract Biominerals typically form within localized volumes, affording organisms great control over the mineralization process. The influence of such confinement on crystallization is studied here by precipitating CaCO3 within the confines of an annular wedge, formed around the contact point of two crossed half-cylinders. The cylinders are functionalized with self-assembled monolayers of mercaptohexadecanoic acid on gold. This configuration enables a systematic study of the effects of confinement since the surface separation increases continuously from zero at the contact point to macroscopic (mm) separations. While oriented rhombohedral calcite crystals form at large (>10,µm) separations, particles with irregular morphologies and partial crystallinity are observed as the surface separation approaches the dimensions of the unconfined crystals (5,10,µm). Further increase in the confinement has a significant effect on the crystallization process with flattened amorphous CaCO3 (ACC) particles being formed at micrometer separations. These ACC particles show remarkable stability when maintained within the wedge but rapidly crystallize on separation of the cylinders. A comparison of bulk and surface free-energy terms shows that ACC cannot be thermodynamically stable at these large separations, and the stability is attributed to kinetic factors. This study therefore shows that the environment in which minerals form can have a significant effect on their stability and demonstrates that ACC can be stabilized with respect to the crystalline polymorphs of CaCO3 by confinement alone. That ACC was stabilized at such large (micrometer) separations is striking, and demonstrates the versatility of this strategy, and its potential value in biological systems. [source]


Hip geometry variation is associated with bone mineralization pathway gene variants: The framingham study

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 7 2010
Ching-Lung Cheung
Abstract Mineralization of bone matrix is an important process in bone formation; thus defects in mineralization have been implicated in bone mineral density (BMD) and bone structure alterations. Three central regulators of phosphate balance, ALPL, ANKH, and ENPP1, are central in the matrix mineralization process; therefore, the genes encoding them are considered important candidates genes for BMD and bone geometry. To test for an association between these three candidate genes and BMD and bone geometry traits, 124 informative single-nucleotide polymorphisms (SNPs) were selected and genotyped in 1513 unrelated subjects from the Framingham offspring cohort. Initial results showed that SNP rs1974201 in the gene ENPP1 was a susceptibility variant associated with several hip geometric indices, with the strongest p value of 3.8,×,10,7 being observed for femoral neck width. A few modest associations were observed between SNPs in or near ALPL and several bone traits, but no association was observed with ANKH. The association signals observed for SNPs around rs1974201 were attenuated after conditional analysis on rs1974201. Transcription factor binding-site prediction revealed that the HOXA7 binding site was present in the reference sequence with the major allele, whereas this potential binding site is lost in the sequence with the minor allele of rs1974201. In conclusion, we found evidence for association of bone geometry variation with an SNP in ENPP1, a gene in the mineralization pathway. The alteration of a binding site of the deregulator of extracellular matrix HOXA7 warrants further investigation. © 2010 American Society for Bone and Mineral Research [source]


Influence of muscular activity on local mineralization patterns in metatarsals of the embryonic mouse

JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 4 2000
E. Tanck
This study addressed the theory that local mechanical loading may influence the development of embryonic long bones. Embryonic mouse metatarsal rudiments were cultured as whole organs, and the geometry of the primary ossification center was compared with that of rudiments that had developed in utero. The mineralization front in vivo was found to be nearly straight, whereas in vitro it acquired a more convex shape due to a slower mineralization rate at the periphery of the mineralized cylinder. A poroelastic finite element analysis was performed to calculate the local distributions of distortional strain and fluid pressure at the mineralization front in the metatarsal during loading in vivo as a result of muscle contractions in the embryonic hindlimbs. The distribution of fluid pressure from the finite element analysis could not explain the difference in mineralization shape. The most likely candidate for the difference was the distortional strain, resulting from muscle contraction, which is absent in vitro, because its value at the periphery was significantly higher than in the center of the tissue. Without external loads, the mineralization process may be considered as pre-programmed, starting at the center of the tissue and resulting in a spherical mineralization front. Strain modulates the rate of the mineralization process in vivo, resulting in the straight mineralization front. These results confirm that disturbances in muscle development are likely to produce disturbed mineralization patterns, resulting in a disordered osteogenic process. [source]


Oversulfated chondroitin sulfate-E binds to BMP-4 and enhances osteoblast differentiation

JOURNAL OF CELLULAR PHYSIOLOGY, Issue 3 2008
Tatsuya Miyazaki
Small leucine-rich proteoglycans, such as biglycan, and their side chain sulfated glycosaminoglycans (GAGs), have been suggested to be involved in bone formation and mineralization processes. The present study was designed to investigate whether chondroitin sulfate (CS), one of the GAG, and its oversulfated structures coupled with bone morphogenetic protein-4 (BMP-4) alter the differentiation and subsequent mineralization of MC3T3-E1 osteoblastic cells. CS-E, one of the oversulfated CS structure, enhanced cell growth, alkaline phosphatase (ALP) activity, collagen deposition, and mineralization whereas heparin enhanced only ALP activity and mineralization. As well as CS-E, CS-H, and CPS also enhanced the mineralization of the cells. CS-E enhanced the mineralization of the cells by interacting with protein in the conditioned medium. CS-E induced mineralization was significantly inhibited by an antibody against BMP-4. The addition of exogenous BMP-4 further increased the capacity of CS-E to enhance mineralization. Fluorescence correlation spectroscopy method using fluoresceinamine-labeled GAG revealed that the oversulfated GAGs have a high affinity for BMP-4. The disaccharide analysis of the cells indicated that MC3T3-E1 cells are capable of producing oversulfated structures of CS by themselves. The lack of CS from the cells after chondroitinase treatment resulted in the inhibition of mineralization. These results in the present study indicate that oversulfated CS, which possesses 4,6-disulfates in N -acetyl-galactosamine, binds to BMP-4 and promotes osteoblast differentiation and subsequent mineralization. J. Cell. Physiol. 217: 769,777, 2008. © 2008 Wiley-Liss, Inc. [source]


Involvement of the Klotho Protein in Dentin Formation and Mineralization

THE ANATOMICAL RECORD : ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, Issue 2 2008
Hironobu Suzuki
Abstract Klotho -deficient mice exhibit multiple pathological conditions resembling human aging. Our previous study showed alterations in the distribution of osteocytes and in the bone matrix synthesis in klotho -deficient mice. Although the bone and tooth share morphological features such as mineralization processes and components of the extracellular matrix, little information is available on how klotho deletion influences tooth formation. The present study aimed to elucidate the altered histology of incisors of klotho -deficient mice,comparing the findings with those from their wild-type littermates, by using immunohistochemistry for alkaline phosphatase (ALP), osteopontin, and dentin matrix protein-1 (DMP-1), terminal deoxynucleotidyl transferase-mediated deoxyuridinetriphosphate nick end-labeling (TUNEL) detection for apoptosis, and electron probe microanalyzer (EPMA) analysis on calcium (Ca), phosphate (P), and magnesium (Mg). Klotho -deficient incisors exhibited disturbed layers of odontoblasts, predentin, and dentin, resulting in an obscure dentin-predentinal border at the labial region. Several odontoblast-like cells without ALP activity were embedded in the labial dentin matrix, and immunopositivity for DMP-1 and osteopontin was discernible in the matrix surrounding these embedded odontoblast-like cells. TUNEL detection demonstrated an apoptotic reaction in the embedded odontoblast-like cells and pulpal cells in the klotho -deficient mice. EPMA revealed lower concentrations of Ca, P, and Mg in the klotho -deficient dentin, except for the dentin around abnormal odontoblast-like cells. These findings suggest the involvement of the klotho gene in dentinogenesis and its mineralization. Anat Rec, 2007. © 2008 Wiley-Liss, Inc. [source]


Origin and Superposition Metallogenic Model of the Sandstone-type Uranium Deposit in the Northeastern Ordos Basin, China

ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 4 2008
LI Ziying
Abstract This paper deals with the metallogenic model of the sandstone type uranium deposit in the northeastern Ordos Basin from aspects of uranium source, migration and deposition. A superposition metallogenic model has been established due to complex uranium mineralization processes with superposition of oil-gas reduction and thermal reformation. [source]