Home About us Contact | |||
Mine Waste (mine + waste)
Selected AbstractsMicrobial communities in a porphyry copper tailings impoundment and their impact on the geochemical dynamics of the mine wasteENVIRONMENTAL MICROBIOLOGY, Issue 2 2007Nouhou Diaby Summary The distribution and diversity of acidophilic bacteria of a tailings impoundment at the La Andina copper mine, Chile, was examined. The tailings have low sulfide (1.7% pyrite equivalent) and carbonate (1.4% calcite equivalent) contents and are stratified into three distinct zones: a surface (0-70-80 cm) ,oxidation zone' characterized by low-pH (2.5,4), a ,neutralization zone' (70,80 to 300,400 cm) and an unaltered ,primary zone' below 400 cm. A combined cultivation-dependent and biomolecular approach (terminal restriction enzyme fragment length polymorphism and 16S rRNA clone library analysis) was used to characterize the indigenous prokaryotic communities in the mine tailings. Total cell counts showed that the microbial biomass was greatest in the top 125 cm of the tailings. The largest numbers of bacteria (109 g,1 dry weight of tailings) were found at the oxidation front (the junction between the oxidation and neutralization zones), where sulfide minerals and oxygen were both present. The dominant iron-/sulfur-oxidizing bacteria identified at the oxidation front included bacteria of the genus Leptospirillum (detected by molecular methods), and Gram-positive iron-oxidizing acidophiles related to Sulfobacillus (identified both by molecular and cultivation methods). Acidithiobacillus ferrooxidans was also detected, albeit in relatively small numbers. Heterotrophic acidophiles related to Acidobacterium capsulatum were found by molecular methods, while another Acidobacterium -like bacterium and an Acidiphilium sp. were isolated from oxidation zone samples. A conceptual model was developed, based on microbiological and geochemical data derived from the tailings, to account for the biogeochemical evolution of the Piuquenes tailings impoundment. [source] Assessment of zinc phytoavailability by diffusive gradients in thin filmsENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 4 2005Osman Sonmez Abstract Asessment of Zn phytoavailability can be predicted with routine soil extractants, but these methods generally do not perform well across a wide range of soils. The newly developed technique of diffuse gradients in thin films (DGT) has been employed to determine phytoavailable Cu concentrations, but its suitability for determining plant available Zn concentrations has not been evaluated. A greenhouse study was conducted to assess the phytotoxicity thresholds and the phytoavailability of Zn to sorghum-sudan (Sorghum vulgare var. sudanese) grass by DGT, compared with CaCl2 extraction. A range of phytoavailable Zn concentrations was created by amending sand with ZnSO4 or with two different Zn mine wastes. Plant nutrients were added as Hoagland solution. In general, increasing Zn concentrations in the sand mixtures increased Zn adsorption by DGT and decreased the sorghum-sudan yield. A critical value for 90% of the control yield was chosen as an indicator of Zn toxicity. Critical values of DGT Zn, CaCl2 -extractable Zn, and plant tissue Zn were similar statistically across the three Zn sources. The performances of DGT and CaCl2 extraction for assessing Zn phytoavailability were similar. Shoot and root Zn concentrations of sorghum-sudan grass exceeded 500 mg kg,1 for many treatments. Calcium-to-Zn ratios for shoots were <32, suggesting Zn phytotoxicity. The data suggested that Zn phytotoxicity can be induced with mine wastes, although further evaluation is needed to establish a link between mine waste and Zn phytotoxicity. [source] Mobilization of metals from uranium mine waste: the role of pyoverdines produced by Pseudomonas fluorescensGEOBIOLOGY, Issue 4 2010F. EDBERG Microorganisms produce chelating agents, such as siderophores and other ligands, which allow them to mobilize and scavenge essential elements from the environment when bioavailability is low. To better understand the effects of biologically mediated leaching of metals from mine waste, Pseudomonas fluorescens was cultivated in the presence of processed ore from the former uranium mine in Ranstad, southern Sweden. Light conditions, the concentration of the mineral source and oxygen availability were varied. The presence of ore in the culture flasks enhanced bacterial growth and raised the pH of the culture medium. Increasing the amount of ore or enhancing aeration of the medium further encouraged cell growth and pH rise. Bacteria mobilized Fe, Ni and Co from the ore. Fe-siderophore complexes were detected and estimated to be present at approximately 9 ,m. In the presence of bacteria and light, dissolved Fe and U concentrations were higher compared to dark conditions. Increasing the amount of ore resulted in higher dissolved Ni concentrations but lower dissolved Fe, most likely due to precipitate formation. Data from this study support siderophore production by bacteria that allowed mobilization of essential nutrients from the processed ore. However, the availability of potentially toxic metals like Ni and U may also be enhanced. Microbial-promoted mobilization could contribute to leaching of toxic metals in current and historic mining areas. This process should be considered during design and implementation of remediation projects where trace metals are of environmental concern. [source] MODELING METALS TRANSPORT AND SEDIMENT/WATER INTERACTIONS IN A MINING IMPACTED MOUNTAIN STREAM,JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 6 2004Brian S. Caruso ABSTRACT: The U.S. Environmental Protection Agency (USEPA) Water Quality Analysis Simulation Program (WASP5) was used to model the transport and sediment/water interactions of metals under low flow, steady state conditions in Tenmile Creek, a mountain stream supplying drinking water to the City of Helena, Montana, impacted by numerous abandoned hard rock mines. The model was calibrated for base flow using data collected by USEPA and validated using data from the U.S. Geological Survey (USGS) for higher flows. It was used to assess metals loadings and losses, exceedances of Montana State water quality standards, metals interactions in stream water and bed sediment, uncertainty in fate and transport processes and model parameters, and effectiveness of remedial alternatives that include leaving contaminated sediment in the stream. Results indicated that during base flow, adits and point sources contribute significant metals loadings to the stream, but that shallow ground water and bed sediment also contribute metals in some key locations. Losses from the water column occur in some areas, primarily due to adsorption and precipitation onto bed sediments. Some uncertainty exists in the metal partition coefficients associated with sediment, significance of precipitation reactions, and in the specific locations of unidentified sources and losses of metals. Standards exceedances are widespread throughout the stream, but the model showed that remediation of point sources and mine waste near water courses can help improve water quality. Model results also indicate, however, that alteration of the water supply scheme and increasing base flow will probably be required to meet all water quality standards. [source] Agricultural soils spiked with copper mine wastes and copper concentrate: Implications for copper bioavailability and bioaccumulation,ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 3 2006Rosanna Ginocchio Abstract A better understanding of exposure to and effects of copper-rich pollutants in soils is required for accurate environmental risk assessment of copper. A greenhouse experiment was conducted to study copper bioavailability and bioaccumulation in agricultural soils spiked with different types of copper-rich mine solid wastes (copper ore, tailing sand, smelter dust, and smelter slag) and copper concentrate. A copper salt (copper sulfate, CuSO4) that frequently is used to assess soil copper bioavailability and phytotoxicity also was included for comparison. Results showed that smelter dust, tailing sand, and CuSO4 are more likely to be bioavailable and, thus, toxic to plants compared with smelter slag, concentrate, and ore at equivalent total copper concentrations. Differences may be explained by intrinsic differences in copper solubilization from the source materials, but also by their capability to decrease soil pH (confounding effect). The copper toxicity and bioaccumulation in plants also varied according to soil physicochemical characteristics (e.g., pH and total organic carbon) and the available levels of plant nutrients, such as nitrogen, phosphorus, and potassium. Chemistry/mineralogy of mine materials, soil/pore-water chemistry, and plant physiological status thus should be integrated for building adequate models to predict phytotoxicity and environmental risk of copper. [source] Assessment of zinc phytoavailability by diffusive gradients in thin filmsENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 4 2005Osman Sonmez Abstract Asessment of Zn phytoavailability can be predicted with routine soil extractants, but these methods generally do not perform well across a wide range of soils. The newly developed technique of diffuse gradients in thin films (DGT) has been employed to determine phytoavailable Cu concentrations, but its suitability for determining plant available Zn concentrations has not been evaluated. A greenhouse study was conducted to assess the phytotoxicity thresholds and the phytoavailability of Zn to sorghum-sudan (Sorghum vulgare var. sudanese) grass by DGT, compared with CaCl2 extraction. A range of phytoavailable Zn concentrations was created by amending sand with ZnSO4 or with two different Zn mine wastes. Plant nutrients were added as Hoagland solution. In general, increasing Zn concentrations in the sand mixtures increased Zn adsorption by DGT and decreased the sorghum-sudan yield. A critical value for 90% of the control yield was chosen as an indicator of Zn toxicity. Critical values of DGT Zn, CaCl2 -extractable Zn, and plant tissue Zn were similar statistically across the three Zn sources. The performances of DGT and CaCl2 extraction for assessing Zn phytoavailability were similar. Shoot and root Zn concentrations of sorghum-sudan grass exceeded 500 mg kg,1 for many treatments. Calcium-to-Zn ratios for shoots were <32, suggesting Zn phytotoxicity. The data suggested that Zn phytotoxicity can be induced with mine wastes, although further evaluation is needed to establish a link between mine waste and Zn phytotoxicity. [source] Copper accumulation, synthesis of ascorbate and activation of ascorbate peroxidase in Enteromorpha compressa (L.) Grev. (Chlorophyta) from heavy metal-enriched environments in northern ChilePLANT CELL & ENVIRONMENT, Issue 10 2003N. RATKEVICIUS ABSTRACT Enteromorpha compressa is the dominant species in coastal areas of northern Chile receiving copper mine wastes. Copper remains as the main heavy metal in these coastal waters and it is accumulated in E. compressa growing at the impacted sites. Algae from these sites showed higher levels of lipoperoxides than from non-impacted sites, which suggests the occurrence of cellular damage resulting from oxidative stress. The strong activation of ascorbate peroxidase detected in this study probably occurs in order to buffer this oxidative stress. Unexpectedly, the activity of glutathione reductase, normally coupled to ascorbate peroxidase activity, was not affected by the chronic exposure to the mine wastes. Moreover, catalase, dehydroascorbate reductase and glutathione peroxidase, commonly reported to buffer oxidative stress in plants and algae, were not detected in E. compressa from any of the studied sites. Levels of total glutathione and phenolic compounds decreased in algae from mine-impacted sites. In contrast, high levels of dehydroascorbate were found in algae from impacted sites, whereas ascorbate remained unchanged. Therefore, it is suggested that E. compressa tolerates a copper-enriched environment, and the accompanying oxidative stress, through the accumulation of copper, activation of ascorbate peroxidase, synthesis of ascorbate (accumulated as dehydroascorbate) and consumption of glutathione and water-soluble phenolic compounds. [source] |