Mine Drainage (mine + drainage)

Distribution by Scientific Domains

Kinds of Mine Drainage

  • acid mine drainage


  • Selected Abstracts


    Leaf Associated Microbial Activities in a Stream Affected by Acid Mine Drainage

    INTERNATIONAL REVIEW OF HYDROBIOLOGY, Issue 5-6 2004
    Jeanette SchliefArticle first published online: 23 NOV 200
    Abstract Microbial activity was assessed on birch leaves and plastic strips during 140 days of exposure at three sites in an acidic stream of the Lusatian post-mining landscape, Germany. The sites differed in their degrees of ochre deposition and acidification. The aim of the study was (1) to follow the microbial activities during leaf colonization, (2) to compare the effect of different environmental conditions on leaf associated microbial activities, and (3) to test the microbial availability of leaf litter in acidic mining waters. The activity peaked after 49 days and subsequently decreased gradually at all sites. A formation of iron plaques on leaf surfaces influenced associated microbial activity. It seemed that these plaques inhibit the microbial availability of leaf litter and serve as a microbial habitat by itself. (© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


    Acid Mine Drainage and Heavy Metal Pollution from Solid Waste in the Tongling Mines, China

    ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 1 2008
    XU Xiaochun
    Abstract: Based on investigation of the characteristics of solid waste of two different mines, the Fenghuangshan copper mine and the Xinqiao pyrite mine in Tongling, Anhui province in central-east China, the possibility and the differences of acid mine drainage (AMD) of the tailings and the waste rocks are discussed, and the modes of occurrence of heavy metal elements in the mine solid waste are also studied. The Fenghuangshan copper mine hardly produces AMD, whereas the Xinqiao pyrite mine does and there are also differences in the modes of occurrence of heavy metal elements in the tailings. For the former, toxic heavy metals such as Cu, Pb, Zn, Cd, As and Hg exist mostly in the slag mode, as compared to the latter, where the deoxidization mode has a much higher content, indicating that large amounts minerals in the waste rocks have begun to oxidize at the earth surface. AMD is proved to promote the migration and spread of the heavy metals in mining waste rocks and lead to environmental pollution of the surroundings of the mine area. [source]


    Oxidation of ferrous iron by Thiobacillus ferrooxidans in a full-scale rotating biological contactor

    ENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY, Issue 4 2001
    L. Nikolov
    The performance of a full-scale rotating biological contactor used for the oxidation of ferrous iron by Thiobacillus ferrooxidans in drainage waters was studied. It has been shown that high volumetric rates, up to 2.5 g/Lh can be obtained. We also examined the effects of input ferrous iron concentration and liquid retention time on reactor performance. It has been shown that when the input iron concentration increased, volumetric reaction rate increased while substrate conversion decreased. In general, the rotating biological contractor is a promising tool for the biological treatment of acid mine drainage containing ferrous iron. [source]


    Acute toxicity of heavy metals to acetate-utilizing mixed cultures of sulfate-reducing bacteria: EC100 and EC50

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 12 2001
    Vivek P. Utgikar
    Abstract Acid mine drainage from abandoned mines and acid mine pit lakes is an important environmental concern and usually contains appreciable concentrations of heavy metals. Because sulfate-reducing bacteria (SRB) are involved in the treatment of acid mine drainage, knowledge of acute metal toxicity levels for SRB is essential for the proper functioning of the treatment system for acid mine drainage. Quantification of heavy metal toxicity to mixed cultures of SRB is complicated by the confounding effects of metal hydroxide and sulfide precipitation, biosorption, and complexation with the constituents of the reaction matrix. The objective of this paper was to demonstrate that measurements of dissolved metal concentrations could be used to determine the toxicity parameters for mixed cultures of sulfate-reducing bacteria. The effective concentration, 100% (EC100), the lowest initial dissolved metal concentrations at which no sulfate reduction is observed, and the effective concentration, 50% (EC50), the initial dissolved metal concentrations resulting in a 50% decrease in sulfate reduction, for copper and zinc were determined in the present study by means of nondestructive, rapid physical and chemical analytical techniques. The reaction medium used in the experiments was designed specifically (in terms of pH and chemical composition) to provide the nutrients necessary for the sulfidogenic activity of the SRB and to preclude chemical precipitation of the metals under investigation. The toxicity-mitigating effects of biosorption of dissolved metals were also quantified. Anaerobic Hungate tubes were set up (at least in triplicate) and monitored for sulfate-reduction activity. The onset of SRB activity was detected by the blackening of the reaction mixture because of formation of insoluble ferrous sulfide. The EC100 values were found to be 12 mg/L for copper and 20 mg/L for zinc. The dissolved metal concentration measurements were effective as the indicators of the effect of the heavy metals at concentrations below EC100. The 7-d EC50 values obtained from the difference between the dissolved metal concentrations for the control tubes (tubes not containing copper or zinc) and tubes containing metals were found to be 10.5 mg/L for copper and 16.5 mg/L for zinc. Measurements of the turbidity and pH, bacterial population estimations by means of a most-probable number technique, and metal recovery in the sulfide precipitate were found to have only a limited applicability in these determinations. [source]


    Laboratory to field validation in an integrative assessment of an acid mine drainage,impacted watershed

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 4 2000
    David J. Soucek
    Abstract An integrative assessment was conducted in the Puckett's Creek watershed of southwestern Virginia, USA, to investigate the environmental impacts of acid mine drainage (AMD) inputs. Twenty-one sampling stations were categorized into groups based on five degrees of AMD input: (1) none, (2) intermittent acidic/circum-neutral AMD, (3) continuous acidic AMD, (4) continuous circum-neutral AMD, and (5) receiving system stations with at least two levels of dilution. Bioassessment techniques included water/sediment chemistry, benthic macroinvertebrate sampling, laboratory acute water column toxicity testing, laboratory chronic sediment toxicity testing, and in situ toxicity testing with Asian clams (Corbicula fluminea [Müller]). Group 3 stations had significantly altered water chemistry (low pH, high conductivity, and high water column metals) relative to the other groups and significantly higher sediment iron concentrations. Both group 3 and group 4 stations had significantly decreased ephemeroptera-plecoptera-trichoptera richness and percent ephemeroptera abundance relative to unimpacted stations. Group 3 stations also had decreased total taxon richness. Water column toxicity testing was sensitive to AMD impacts, with samples from group 3 stations being significantly more toxic than those from groups 2 and 4, which in turn were more toxic than those from groups 1 and 5. Similar results were observed for in situ toxicity testing. No differences in sediment toxicity test survival and impairment results were observed among the station groups. Stepwise multiple linear regression and simple bivariate correlation analyses were used to select parameters for use in an ecotoxicologic rating system, which was successful in differentiating between two levels of environmental impact relative to stations receiving no AMD input. [source]


    Regulating the mobility of Cd, Cu and Pb in an acid soil with amendments of phosphogypsum, sugar foam, and phosphoric rock

    EUROPEAN JOURNAL OF SOIL SCIENCE, Issue 2 2006
    F. Garrido
    Summary When acid soil has been contaminated by metals as a result of industrial discharges, accidental spills, or acid mine drainage it may be desirable to retain the metals in the soil rather than allow them to leach away. We have investigated the potential of phosphogypsum (PG), sugar foam (SF), and phosphoric rock (PR) to regulate the availability and mobility of Pb, Cd and Cu. We have also identified changes in attenuation during incubation for 1 year and the effect of aging on metal speciation in amended soils. We studied miscible displacement in columns of undisturbed soil previously treated with solutions of the amendments and soluble metals and, subsequently, single and sequential chemical metal extractions. All amendments increased the soil's metal retention capacity. This, in turn, increased the amount of metal extractable by diethylenetriaminepentaacetic acid (DTPA). However, over time the amounts of DTPA-extractable metal decreased, particularly for Cu and Pb. Both Cu and Cd were held preferentially within the acetic acid-extractable fraction (operationally defined exchangeable fraction , EX fraction), whereas Pb was associated mainly with the hydroxylammonium-extractable fraction (operationally defined bound to Fe and Al hydroxides , OX fraction). Both Pb and Cu in the oxide and organic fractions increased in the PG- and SF-treated soils. In general, the distribution of metal did not change in the PR-treated columns after the incubation. Finally, scanning electron microscopy in back-scattered electron mode (SEM,BSE) showed the formation of Al-hydroxy polymers which provides the soils with additional cation sorption capacity. In the PG- and PR-treated columns, P and S were associated with these formations. The three metals were associated with the Al polymers, probably through direct coordination or the formation of ternary complexes with the inorganic ligands phosphate and sulphate. [source]


    Effects of acidification on the breeding ecology of a stream-dependent songbird, the Louisiana waterthrush (Seiurus motacilla)

    FRESHWATER BIOLOGY, Issue 11 2008
    ROBERT S. MULVIHILL
    Summary 1.,We compared breeding ecology of the Louisiana waterthrush (Seiurus motacilla) on acidified and circumneutral streams in the Appalachian Highlands of Southwestern Pennsylvania from 1996 to 2005. 2.,Headwater streams impacted by acid mine drainage and/or acidic precipitation showed reduced pH (range 4.5,5.5) compared to four circumneutral streams (pH c. 7). Acid-sensitive taxa, including most mayflies (Ephemeroptera), were almost completely absent from acidified streams, whereas several acid-tolerant taxa, especially stonefly (Plecoptera) genera Leuctra and Amphinemura, were abundant. 3.,Louisiana waterthrush breeding density (c. 1 territory km,1) was significantly reduced on acidified streams compared to circumneutral streams (>2 territories km,1). Territories on acidified streams were almost twice as long as on circumneutral streams. Territories usually were contiguous on circumneutral streams, but they were often disjunct on acidified streams. Breeding density declined on one acidified stream that we studied over a 10-year period. 4.,Clutch initiation was significantly delayed on acidified streams, on average by 9 days in comparison to circumneutral streams, and first-egg dates were inversely related to breeding density. Birds nesting along acidified streams laid smaller clutches, and nestlings had shorter age-adjusted wing lengths. Stream acidity had no effect on nest success or annual fecundity (fledglings/female). However, the number of young fledged km,1 was nearly twice as high on circumneutral streams as on acidified streams. 5.,Acidified streams were characterized by a younger, less site-faithful breeding population. Individuals were less likely to return multiple years to breed, allowing inexperienced breeders to settle on acidified streams. Pairing success was lower on acidified streams, and we observed four cases of waterthrushes emigrating from territories on acidified streams to nearby circumneutral streams in the following year. 6.,We conclude that acidified headwaters constitute lower quality habitat for breeding Louisiana waterthrush. However, breeding birds can apparently compensate for reduced prey resources to fledge young on acidified streams by increasing territory size, foraging in peripheral non-acidified areas, and by provisioning young with novel prey. [source]


    Growth of three bacteria in arsenic solution and their application for arsenic removal from wastewater

    JOURNAL OF BASIC MICROBIOLOGY, Issue 6 2008
    P. Mondal
    Abstract The present paper compares the arsenic removal capacities of three bacterial strains namely, Ralstonia eutropha MTCC 2487, Pseudomonas putida MTCC 1194 and Bacillus indicus MTCC 4374 form wastewater (simulated acid mine drainage) containing arsenic (As(III):As(V)::1:1), Fe, Mn, Cu and Zn in the concentration of 15 mg/l, 10 mg/l, 2 mg/l, 5 mg/l and 10 mg/l respectively, in bulk liquid phase. Growth patterns of these bacteria in presence of arsenic in solution as well as under starvation have also been investigated as the acid mine drainage normally does not contain organic carbon and also contains high arsenic. At the nutrient broth concentration of 1.25 g/l and in presence of 15 mg/l arsenic sufficient growth of these strains have been observed. However, growth of Ralstonia eutropha MTCC 2487 has been found slightly more than Pseudomonas putida MTCC 1194 and Bacillus indicus MTCC 4374. Arsenic removal capacities of Ralstonia eutropha MTCC 2487, Pseudomonas putida MTCC 1194 and Bacillus indicus MTCC 4374 from simulated acid mine drainage are ,67%, 60% and 61% respectively. It has also been observed that arsenic concentration of 15 mg/l prolongs the stationary phase of these strains. pH and temperature for the above studies have been maintained at 7.1 ± 0.1 and 29 ± 1 °C, respectively. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


    Archaeal diversity in acid mine drainage from Dabaoshan Mine, China

    JOURNAL OF BASIC MICROBIOLOGY, Issue 5 2008
    Guan-zhou Qiu
    Abstract Three acid mine drainage (AMD) samples collected from Dabaoshan Mine (Guangdong Province, China) were studied. In addition to physicochemical analyses, the diversity and community structures of the archaeal communities in these samples were described at the genetic level by amplified ribosomal DNA restriction analysis (ARDRA). Nine different ARDRA patterns were obtained from 146 clones and were studied as operational taxonomic units (OTUs), which were re-amplified and sequenced. Sequence data and phylogenetic analysis showed that most of the clones belonged to the Thermoplasmatales, and that archaea belonging to the Sulfolobales were absent. Only 1 OTU attributed to Ferroplasma was found and was observed to be abundant in all 3 samples. Eight OTUs were related to 2 new undefined groups in the Thermoplasmatales. Of the 8 OTUs, the clones in 2 similar units were isolated from samples collected from an abandoned sulfide mine (Huelva, Spain) and those in 5 similar units were isolated from samples collected from a closed copper mine (Tonglushan, China). These diversities were characterized by the reciprocal of Simpson's index (1/D) and correlated with the concentrations of ferrous ions and toxic ions in the AMD samples. The high temperature of the sampling sites was one of the factors that could explain why archaea belonging to the Thermoplasmatales were abundant in the analyzed AMD samples while those belonging to the Sulfolobales were absent. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


    59 Utility of the periphyton index of biotic integrity (PIBI) as an indicator of acid mine drainage impacts in southeastern ohio

    JOURNAL OF PHYCOLOGY, Issue 2003
    S. E. Hamsher
    In the Appalachian region, numerous streams are polluted with acid mine drainage (AMD). These waters are sulfate-rich with elevated amounts of total acidity, low pH, and high levels of dissolved metals. Biotic multimetric indices, such as the Periphyton Index of Biotic Integrity (PIBI) have been employed to determine water quality across a variety of environmental conditions and may prove useful for AMD impacts. This study was initiated (1) to evaluate the PIBI for distinguishing AMD impact in streams and (2) to examine whether PIBI scores are impacted by seasonal differences. Twelve AMD and three reference streams were sampled for periphyton in June, August, and October. Water chemistry was collected at least once during the sampling period. Preliminary results showed that PIBI scores were significantly different (p<0.05) among the seasons. In addition, the seasonal trends in PIBI scores among streams were not consistent. The PIBI scores were correlated with six water chemistry variables in August and with at least one variable indicative of AMD in each season sampled. PCA and UPGMA analyses of water chemistry data grouped the streams into five categories: (1) moderately impacted AMD streams with lower total dissolved solids, sulfate, total aluminum, and alkalinity, and higher sulfate; (2) AMD streams with higher alkalinity and lower total aluminum; (3) AMD streams with lower alkalinity and higher total aluminum; (4) reference streams and (5) an outlier reference stream affected by nutrients. Relationships between the groups based on water chemistry and the groups derived from the PIBI will be discussed. [source]


    Acid Mine Drainage and Heavy Metal Pollution from Solid Waste in the Tongling Mines, China

    ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 1 2008
    XU Xiaochun
    Abstract: Based on investigation of the characteristics of solid waste of two different mines, the Fenghuangshan copper mine and the Xinqiao pyrite mine in Tongling, Anhui province in central-east China, the possibility and the differences of acid mine drainage (AMD) of the tailings and the waste rocks are discussed, and the modes of occurrence of heavy metal elements in the mine solid waste are also studied. The Fenghuangshan copper mine hardly produces AMD, whereas the Xinqiao pyrite mine does and there are also differences in the modes of occurrence of heavy metal elements in the tailings. For the former, toxic heavy metals such as Cu, Pb, Zn, Cd, As and Hg exist mostly in the slag mode, as compared to the latter, where the deoxidization mode has a much higher content, indicating that large amounts minerals in the waste rocks have begun to oxidize at the earth surface. AMD is proved to promote the migration and spread of the heavy metals in mining waste rocks and lead to environmental pollution of the surroundings of the mine area. [source]