Home About us Contact | |||
Approach Capable (approach + capable)
Selected AbstractsCombinatorial Material Mechanics: High-Throughput Polymer Synthesis and Nanomechanical Screening,ADVANCED MATERIALS, Issue 21 2005A. Tweedie Combinatorial materials science requires parallel advances in materials characterization. A high-throughput nanoscale synthesis/nanomechanical profiling approach capable of accurately screening the mechanical properties of 1,700 photopolymerizable materials (see Figure, scale bar: 100 ,m) within a large, discrete polymer library is presented. This approach enables rapid correlation of polymer composition, processing, and structure with mechanical performance metrics. [source] An integrated serum proteomic approach capable of monitoring the low molecular weight proteome with sequencing of intermediate to large peptidesRAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 17 2009Karen Merrell The low-abundance, low molecular weight serum proteome has high potential for the discovery of new biomarkers using mass spectrometry (MS). Because the serum proteome is large and complex, defining relative quantitative differences for a molecular species between comparison groups requires an approach with robust separation capability, high sensitivity, as well as high mass resolution. Capillary liquid chromatography (cLC)/MS provides both the necessary separation technique and the sensitivity to observe many low-abundance peptides. Subsequent identification of potential serum peptide biomarkers observed in the cLC/MS step can in principle be accomplished by in series cLC/MS/MS without further sample preparation or additional instrumentation. In this report a novel cLC/MS/MS method for peptide sequencing is described that surpasses previously reported size limits for amino acid sequencing accomplished by collisional fragmentation using a tandem time-of-flight MS instrument. As a demonstration of the approach, two low-abundance peptides with masses of ,4000,5000,Da were selected for MS/MS sequencing. The multi-channel analyzer (MCA) was used in a novel way that allowed for summation of 120 fragmentation spectra for each of several customized collision energies, providing more thorough fragmentation coverage of each peptide with improved signal to noise. The peak list from this composite analysis was submitted to Mascot for identification. The two index peptides, 4279,Da and 5061,Da, were successfully identified. The peptides were a 39 amino acid immunoglobulin G heavy chain variable region fragment and a 47 amino acid fibrin alpha isoform C-terminal fragment. The method described here provides the ability both to survey thousands of serum molecules and to couple that with markedly enhanced cLC/MS/MS peptide sequencing capabilities, providing a promising technique for serum biomarker discovery. Copyright © 2009 John Wiley & Sons, Ltd. [source] Bioinspired Material Approaches to SensingADVANCED FUNCTIONAL MATERIALS, Issue 16 2009Michael E. McConney Abstract Bioinspired design is an engineering approach that involves working to understand the design principles and strategies employed by biology in order to benefit the development of engineered systems. From a materials perspective, biology offers an almost limitless source of novel approaches capable of arousing innovation in every aspect of materials, including fabrication, design, and functionality. Here, recent and ongoing work on the study of bioinspired materials for sensing applications is presented. Work presented includes the study of fish flow receptor structures and the subsequent development of similar structures to improve flow sensor performance. The study of spider air-flow receptors and the development of a spider-inspired flexible hair is also discussed. Lastly, the development of flexible membrane based infrared sensors, highly influenced by the fire beetle, is presented, where a pneumatic mechanism and a thermal-expansion stress-mediated buckling-based mechanism are investigated. Other areas that are discussed include novel biological signal filtering mechanisms and reciprocal benefits offered through applying the biology lessons to engineered systems. [source] Including species interactions in risk assessments for global changeGLOBAL CHANGE BIOLOGY, Issue 9 2007R. W. SUTHERST Abstract Most ecological risk assessments for global change are restricted to the effects of trends in climate or atmospheric carbon dioxide. In order to move beyond investigation of the effects of climate alone, the climexÔ model was extended to investigate the effects of species interactions, in the same or different trophic levels, along environmental gradients on a geographical scale. Specific needs that were revealed during the investigations include: better treatment of the effects of temporal and spatial climatic variation; elucidation of the nature of boundaries of species ranges; data to quantify the role of species traits in interspecies interactions; integrated observational, experimental, and modelling studies on mechanisms of species interactions along environmental gradients; and high-resolution global environmental datasets. Greater acknowledgement of the shared limitations of simplified models and experimental studies is also needed. Above all, use of the scientific method to understand representative species ranges is essential. This requires the use of mechanistic approaches capable of progressive enhancement. [source] |