Millimolar Concentrations (millimolar + concentration)

Distribution by Scientific Domains


Selected Abstracts


Nitrite anions induce nitrosative deamination of peptides and proteins

RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 24 2006
Haiteng Deng
In the present study, reactions of sodium nitrite with proteins/peptides were characterized with mass spectrometry. The reaction generates two major products: replacement of the amino group by a hydroxyl group and formation of an alkene derivative by loss of a NH3 group at the N-terminus and the side chain of lysine residues of proteins/peptides. The reaction proceeds rapidly in weak acidic solution and at 37°C in the presence of a millimolar concentration of nitrite, demonstrating that nitrite induces nitrosative deamination in proteins and peptides. The facile nitrite-induced modification of amino groups of protein/peptides changes the chemical nature of proteins and may have various applications in peptide synthesis, analytical chemistry, and protein engineering. It also provides information to enhance our understanding of functions of nitrite ions in biology and food preservation. Copyright © 2006 John Wiley & Sons, Ltd. [source]


NTPDase1 governs P2X7 -dependent functions in murine macrophages

EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 5 2010
Sébastien A. Lévesque
Abstract P2X7 receptor is an adenosine triphosphate (ATP)-gated ion channel within the multiprotein inflammasome complex. Until now, little is known about regulation of P2X7 effector functions in macrophages. In this study, we show that nucleoside triphosphate diphosphohydrolase 1 (NTPDase1)/CD39 is the dominant ectonucleotidase expressed by murine peritoneal macrophages and that it regulates P2X7 -dependent responses in these cells. Macrophages isolated from NTPDase1-null mice (Entpd1,/,) were devoid of all ADPase and most ATPase activities when compared with WT macrophages (Entpd1+/+). Entpd1,/, macrophages exposed to millimolar concentrations of ATP were more susceptible to cell death, released more IL-1, and IL-18 after TLR2 or TLR4 priming, and incorporated the fluorescent dye Yo-Pro-1 more efficiently (suggestive of increased pore formation) than Entpd1+/+ cells. Consistent with these observations, NTPDase1 regulated P2X7 -associated IL-1, release after synthesis, and this process occurred independently of, and prior to, cytokine maturation by caspase-1. NTPDase1 also inhibited IL-1, release in vivo in the air pouch inflammatory model. Exudates of LPS-injected Entpd1,/, mice had significantly higher IL-1, levels when compared with Entpd1+/+ mice. Altogether, our studies suggest that NTPDase1/CD39 plays a key role in the control of P2X7 -dependent macrophage responses. [source]


Dihydropyridine- and voltage-sensitive Ca2+ entry in human parathyroid cells

EXPERIMENTAL PHYSIOLOGY, Issue 7 2009
Keitaro Yokoyama
Patch-clamp and fluorescence measurements of cytoplasmic Ca2+ concentration ([Ca2+]i) were performed to directly detect extracellular Ca2+ entry into cultured parathyroid cells from patients with secondary hyperparathyroidism. Cells loaded with fluo-3 AM or fluo-4 AM showed a transient increase in fluorescence (Ca2+ transient) following 10 s exposure to 150 mm K+ solution in the presence of millimolar concentrations of external Ca2+. The Ca2+ transient was completely inactivated after 30,40 s exposure to the high-K+ solution, was reduced by dihydropyridine antagonists and was enhanced by FPL-64176, an L-type Ca2+ channel agonist. The electrophysiological and pharmacological properties of the whole-cell Ca2+ and Ba2+ currents were similar to those of L-type Ca2+ channels. The Ca2+ transients induced by 10 s exposure to 3.0 mm extracellular Ca2+ concentration ([Ca2+]o) were inhibited by dihydropyridine antagonists and were partly inactivated following 30,40 s exposure to the high-K+ solution. These results demonstrate, for the first time, that human parathyroid cells express L-type-like Ca2+ channels that are possibly involved in the [Ca2+]o -induced change in [Ca2+]i. This Ca2+ entry system might provide a compensatory pathway for the negative feedback regulation of parathyroid hormone secretion, especially in hyperplastic conditions in which the Ca2+ -sensing receptor is poorly expressed. [source]


Cover Picture: Spectroscopic and Photophysical Properties of a Highly Derivatized C60 Fullerol (Adv. Funct.

ADVANCED FUNCTIONAL MATERIALS, Issue 1 2006
Mater.
Abstract The photo-oxidative stress in aqueous milieus can readily be generated in the presence of newly synthesized highly derivatized fullerenes (fullerols) reported in the Full Paper by Vileno and co-workers on p.,120. Their basic structural and photophysical properties were characterized using a range of methods, including X-ray photoelectron and IR spectroscopies, and electron spin resonance. Moreover, a significant drop of the local stiffness of a living cell was monitored using atomic force microscopy. This cell softening was attributed to the early effects of the photo-oxidative stress. Hydroxylated C60 molecules, also called fullerols, are a class of water-soluble fullerenes. Here we report the synthesis in acidic conditions of a highly derivatized fullerol (up to 36 carbons per C60 are oxidized). Spectroscopic investigations (X-ray photoelectron spectroscopy and infrared absorption) highlight the coexistence of both acidic and basic forms for the hydroxyl addends of derivatized C60. pH titrimetry reveals that, at millimolar concentrations, only ten protons per fullerol molecule are labile. Such a low value, as compared to 36 hydroxyl groups, is explained by the formation of clusters. A UV-vis absorption study performed over a large range of concentrations also points to the aggregation phenomenon. Moreover, this study shows that the clusters of fullerols appear at relatively low (micromolar) concentrations. An electron spin resonance (ESR) study, based on the attack of singlet oxygen (1,g) on 2,2,6,6-tetramethyl-4-piperidinol (TMP-OH), has proved the potential of hydroxylated C60 for performing efficient generation of singlet oxygen in aqueous solution. ESR measurements, which allow detection and quantification of 1,g, have also revealed the generation of reactive oxygen species (ROS). The yield of generation of 1,g and ROS is strongly correlated to the concentration of fullerol, thus also pointing to the aggregation of fullerol molecules. Exposing glioblastoma cells to oxidative stress in the presence of hydroxylated C60 and visible light has also been performed. Atomic force microscopy is used to monitor the relevant diminishment of the Young's modulus values for cells exposed to the oxidative stress. These results point to a possible application field of fullerols for performing bio-oxidations. [source]


Characterization of Arginine Transport in Helicobacter pylori

HELICOBACTER, Issue 4 2003
George L. Mendz
ABSTRACT Background. The amino acid L-arginine is an essential requirement for growth of Helicobacter pylori. Several physiological roles of this amino acid have been identified in the bacterium, but very little is known about the transport of L-arginine and of other amino acids into H. pylori. Methods. Radioactive tracer techniques using L-(U- 14C) arginine and the centrifugation through oil method were employed to measure the kinetic parameters, temperature dependence, substrate specificity, and effects of analogues and inhibitors on L-arginine transport. Results. The transport of arginine at millimolar concentrations was saturable with a Km of 2.4 ± 0.3 mM and Vmax of 1.3 ± 0.2 pmole min,1 (µl cell water),1 or 31 ± 3 nmole per minute (mg protein),1 at 20°C, depended on temperature between 4 and 40°C, and was susceptible to inhibitors. These characteristics suggested the presence of one or more arginine carriers. The substrate specificity of the transport system was studied by measuring the effects of L-arginine analogues and amino acids on the rates of transport of L-arginine. The absence of inhibition in competition experiments with L-lysine and L-ornithine indicated that the transport system was not of the Lysine-Arginine-Ornithine or Arginine-Ornithine types. The presence of different monovalent cations did not affect the transport rates. Several properties of L-arginine transport were elucidated by investigating the effects of potential inhibitors. Conclusions. The results provided evidence that the transport of L-arginine into H. pylori cells was carrier-mediated transport with the driving force supplied by the chemical gradient of the amino acid. [source]


A novel approach to enhancing cellular glutathione levels

JOURNAL OF NEUROCHEMISTRY, Issue 3 2008
Pamela Maher
Abstract GSH and GSH-associated metabolism provide the major line of defense for the protection of cells from oxidative and other forms of toxic stress. Of the three amino acids that comprise GSH, cysteine is limiting for GSH synthesis. As extracellularly cysteine is readily oxidized to form cystine, cystine transport mechanisms are essential to provide cells with cysteine. Cystine uptake is mediated by system xc,, a Na+ -independent cystine/glutamate antiporter. Inhibition of system xc, by millimolar concentrations of glutamate, a pathway termed oxidative glutamate toxicity, results in GSH depletion and nerve cell death. Recently, we described a series of compounds derived from the conjugation of epicatechin (EC) with cysteine and cysteine derivatives that protected nerve cells in culture from oxidative glutamate toxicity by maintaining GSH levels. In this study, we characterize an additional EC conjugate, cysteamine-EC, that is 5- to 10-fold more potent than the earlier conjugates. In addition, we show that these EC conjugates maintain GSH levels by enhancing the uptake of cystine into cells through induction of a disulfide exchange reaction, thereby uncoupling the uptake from system xc,. Thus, these novel EC conjugates have the potential to enhance GSH synthesis under a wide variety of forms of toxic stress. [source]


,-glutamylcysteine ethyl ester-induced up-regulation of glutathione protects neurons against A,(1,42)-mediated oxidative stress and neurotoxicity: Implications for Alzheimer's disease

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 5 2005
Debra Boyd-Kimball
Abstract Glutathione (GSH) is an important endogenous antioxidant found in millimolar concentrations in the brain. GSH levels have been shown to decrease with aging. Alzheimer's disease (AD) is a neurodegenerative disorder associated with aging and oxidative stress. A,(1,42) has been shown to induce oxidative stress and has been proposed to play a central role in the oxidative damage detected in AD brain. It has been shown that administration of ,-glutamylcysteine ethyl ester (GCEE) increases cellular levels of GSH, circumventing the regulation of GSH biosynthesis by providing the limiting substrate. In this study, we evaluated the protective role of up-regulation of GSH by GCEE against the oxidative and neurotoxic effects of A,(1,42) in primary neuronal culture. Addition of GCEE to neurons led to an elevated mean cellular GSH level compared with untreated control. Inhibition of ,-glutamylcysteine synthetase by buthionine sulfoximine (BSO) led to a 98% decrease in total cellular GSH compared with control, which was returned to control levels by addition of GCEE. Taken together, these results suggest that GCEE up-regulates cellular GSH levels which, in turn, protects neurons against protein oxidation, loss of mitochondrial function, and DNA fragmentation induced by A,(1,42). These results are consistent with the notion that up-regulation of GSH by GCEE may play a viable protective role in the oxidative and neurotoxicity induced by A,(1,42) in AD brain. © 2005 Wiley-Liss, Inc. [source]


Noncovalent dimerization of paclitaxel in solution: Evidence from electrospray ionization mass spectrometry

JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 9 2002
Sarah A. Lorenz
Abstract Paclitaxel, a unique antimitotic chemotherapy agent that inhibits cell division by binding to microtubules and prevents them from "depolymerizing," has received widespread interest because of its efficacy in fighting certain types of cancer, including breast and ovarian cancer. Paclitaxel undergoes aggregation at millimolar concentrations in both aqueous media and solvents of low polarity (mimicking hydrophobic environments). Its aggregation may have impact on its aqueous stability and its ability to stabilize microtubules. Here, we investigated the dimerization phenomenon of paclitaxel by electrospray ionization mass spectrometry (ESI-MS). Paclitaxel dimers were stable in solutions of acetonitrile/aqueous ammonium acetate (80/20) and aqueous sodium acetate/acetonitrile (92/8 or 95/5) at various pH values. Additional experiments using solution-phase hydrogen/deuterium exchange were employed to ascertain whether or not the observed dimers were formed in solution or as an artifact of the ESI process by ion,molecule reaction. The evidence supports formation of the dimer in solution, and the approach used can be extended to investigation of other types of drug,drug interactions. © 2002 Wiley-Liss Inc. and the American Pharmaceutical Association J Pharm Sci 91:2057,2066, 2002 [source]


The antiproliferative activity of melatonin in B65 rat dopaminergic neuroblastoma cells is related to the downregulation of cell cycle-related genes

JOURNAL OF PINEAL RESEARCH, Issue 1 2008
Javier G. Pizarro
Abstract:, A potential application of melatonin is its ability to rescue many cell types from cell death, because of its antioxidant properties. Likewise, recent studies suggest that melatonin may also be used as an anti-tumor drug, due to its anti-proliferative properties in tumor cells when administered at physiologic or pharmacologic doses. In the present study, we investigated the mechanisms involved in the apoptosis induced by acute exposure to melatonin and roscovitine in the rat dopaminergic neuroblastoma B65 cell line. Cell growth studies revealed that, at 24 hr of treatment, roscovitine blocked cell growth and induced apoptosis whereas melatonin delayed cell growth and induced a slight increase in the number of apoptotic nuclei. Melatonin also increased the percentage of cells in the G1-phase of the cell cycle, whereas roscovitine blocked cells in the G2/M-phase. Both compounds significantly downregulated the transcriptional activity of cdk4, while melatonin also downregulated cdk2 and cyclin D1. Taken together, our data show that melatonin at millimolar concentrations inhibits dopaminergic B65 proliferation, induces cell apoptosis, and modulates cell cycle progression by inhibiting the transcriptional activity of cyclins and cdks related to the progression of the G1-phase. [source]


Synthesis and aggregation of amine-cored polyamidoamine dendrons synthesised without invoking a protection/deprotection strategy

POLYMER INTERNATIONAL, Issue 7 2006
Amy SH King
Abstract The synthesis of a series of amine-cored N,N -dimethyl-terminated polyamidoamine dendrons with the potential to be modified at their focal point is reported. The use of an aniline core enables the target molecules to be synthesised without resorting to the use of a time-consuming and expensive protection/deprotection strategy. After synthesising these molecules significant frothing in aqueous solution at millimolar concentrations was noticed, a property associated with aggregation. The critical micelle concentrations were therefore measured and found to occur at relatively low dilutions (in the range 10,4,10,5 mol L,1). Copyright © 2006 Society of Chemical Industry [source]


Nitric Oxide Synthase Inhibition by Pentacycloundecane Conjugates of Aminoguanidine and Tryptamine

ARCHIV DER PHARMAZIE, Issue 2 2009
Dennis K. Wilkes
Abstract This paper describes the synthesis and in-vitro activity of pentacycloundecane-conjugated aminoguanidine and tryptamine analogues on nitric oxide synthase (NOS) using rat brain homogenate. Both aminoguanidine and tryptamine-derived NOS inhibitors show selectivity towards the inducible and neuronal isoforms of the NOS enzyme, but are weak inhibitors and complete inhibition of the enzyme occurs only at high millimolar concentrations. In view of the increased NOS inactivation observed with alkyl substitution of these structures, the present study aimed to evaluate the effect of the pentacycloundecane cage moiety as an alkyl substituent on the in vitro NOS inhibition of aminoguanidine and tryptamine compounds. Comparison of the IC50 values of aminoguanidine (IC50 = 2.306×10,3 M) and 8-imino- N -guanidino-pentacyclo-undecane 2 (IC50 = 8.803×10,5 M) revealed a more than 26-fold increase in potency. The ability of tryptamine to inhibit NOS activity was also markedly improved by the various pentacycloundecane substituents. The compounds, 3-hydroxy-4-[3-(2-aminoethyl)indole]-azahexacyclo[5.4.1.02,6.03,10.05,9.08,11]dodecane 4 and 8-[3-(2-aminoethyl) indole]-pentacyclo[5.4.02,6.03,10.05,9]undecane 7 showed the best activity of the tryptamine analogues with a more than 3-fold increase in nitric oxide synthase inhibition. The results confirmed that the pentacycloundecane structure substantially enhanced the NOS inhibitory potency as observed for the six new NOS inhibitors. [source]


The Chemistry of Escapin: Identification and Quantification of the Components in the Complex Mixture Generated by an L -Amino Acid Oxidase in the Defensive Secretion of the Sea Snail Aplysia californica

CHEMISTRY - A EUROPEAN JOURNAL, Issue 7 2009
Michiya Kamio Dr.
Abstract A complex mixture of products in an enzymatic reaction: Aplysia californica releases amino acid oxidase and its substrate lysine in defensive secretions to produce a mixture of multiple compounds (see figure). Escapin is an L -amino acid oxidase in the ink of a marine snail, the sea hare Aplysia californica, which oxidizes L -lysine (1) to produce a mixture of chemicals which is antipredatory and antimicrobial. The goal of our study was to determine the identity and relative abundance of the constituents of this mixture, using molecules generated enzymatically with escapin and also using products of organic syntheses. We examined this mixture under the natural range of pH values for ink,from ,5 at full strength to ,8 when fully diluted in sea water. The enzymatic reaction likely forms an equilibrium mixture containing the linear form ,-keto-,-aminocaproic acid (2), the cyclic imine ,1 -piperidine-2-carboxylic acid (3), the cyclic enamine ,2 -piperidine-2-carboxylic acid (4), possibly the linear enol 6-amino-2-hydroxy-hex-2-enoic acid (7), the ,-dihydroxy acid 6-amino-2,2-dihydroxy-hexanoic acid (8), and the cyclic aminol 2-hydroxy-piperidine-2-carboxylic acid (9). Using NMR and mass spectroscopy, we show that 3 is the major component of this enzymatic product at any pH, but at more basic conditions, the equilibrium shifts to produce relatively more 4, and at acidic conditions, the equilibrium shifts to produce relatively more 2, 7, and/or 9. Studies of escapin's enzyme kinetics demonstrate that because of the high concentrations of escapin and L -lysine in the ink secretion, millimolar concentrations of 3, H2O2, and ammonia are produced, and also lower concentrations of 2, 4, 7, and 9 as a result. We also show that reactions of this mixture with H2O2 produce ,-aminovaleric acid (5) and ,-valerolactam (6), with 6 being the dominant component under the naturally acidic conditions of ink. Thus, the product of escapin's action on L -lysine contains an equilibrium mixture that is more complex than previously known for any L -amino acid oxidase. [source]