Home About us Contact | |||
Migratory Insertion (migratory + insertion)
Selected AbstractsChemInform Abstract: Migratory Insertion of Isonitriles into Titanacyclobutane Complexes.CHEMINFORM, Issue 29 2002A Novel Stereocontrolled Synthesis of Substituted Cyclobutanimines. Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a "Full Text" option. The original article is trackable via the "References" option. [source] A Density Functional Study of the Hydrogenation of Ketones Catalysed by Neutral Rhodium-Diphosphane ComplexesEUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 21 2006Francine Agbossou-Niedercorn Abstract The potential energy profile of RhI -catalysed hydrogenation of ketones has been computed for the simple model system [Rh{H3POCH2CH2N(H)PH3}(Cl)] using DFT calculations. The general sequence of the catalytic cycle involves coordination of the carbonyl derivative to the neutral RhI complex followed by oxidative addition of molecular hydrogen providing rhodium dihydride intermediates. The latter are converted into alkoxy hydrides by a migratory insertion reaction. Reductive elimination of the alcohol and substitution of the latter by the incoming substrate completes the catalyticcycle. Intermediates and transition states of all catalyticsteps have been located. Two isomeric derivatives bearingthe model substrate have been found for the [Rh{H3POCH2CH2N(H)PH3}(Cl)(H2CO)] complex. Eight diastereomeric pathways have been followed for the cis addition of molecular hydrogen to [Rh{H3POCH2CH2N(H)PH3}(Cl)(H2CO)] leading to eight distinct isomeric dihydride intermediates. Four dihydride complexes can be considered as the more accessible compounds. The site preference for migratory insertion and transition states discriminates the main path of the catalytic reaction. Migratory insertion to form the alkoxy hydride constitute the turn over limiting step of the process. The potential energy profile has been found to be smooth without excessive activation barriers. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2006) [source] Cover Picture: (Adv. Synth.ADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 18 2009Catal. The cover picture, provided by Maurice S. Brookhart, shows an example of a cationic palladium diimine complex which catalyzes polymerization of ethylene to high molecular weight, highly branched polyethylene. The catalyst resting states are the alkyl ethylene complexes as modeled by the ethyl ethylene complex shown. Migratory insertion of these alkyl ethylene species leads to ,-agostic complexes in which palladium can rapidly migrate along the chain ("chain-walking") through ,-elimination/readdition reactions. Trapping of branched alkyl complexes followed by insertion leads to formation of branches in the polymer chain. Polyethylenes formed exhibit branches-on-branches since chain-walking through tertiary centers is facile. [source] Cover Picture: (Adv. Synth.ADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 17 2009Catal. The cover picture, provided by Maurice S. Brookhart, shows an example of a cationic palladium diimine complex which catalyzes polymerization of ethylene to high molecular weight, highly branched polyethylene. The catalyst resting states are the alkyl ethylene complexes as modeled by the ethyl ethylene complex shown. Migratory insertion of these alkyl ethylene species leads to ,-agostic complexes in which palladium can rapidly migrate along the chain ("chain-walking") through ,-elimination/readdition reactions. Trapping of branched alkyl complexes followed by insertion leads to formation of branches in the polymer chain. Polyethylenes formed exhibit branches-on-branches since chain-walking through tertiary centers is facile. [source] Cover Picture: (Adv. Synth.ADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 16 2009Catal. The cover picture, provided by Maurice S. Brookhart, shows an example of a cationic palladium diimine complex which catalyzes polymerization of ethylene to high molecular weight, highly branched polyethylene. The catalyst resting states are the alkyl ethylene complexes as modeled by the ethyl ethylene complex shown. Migratory insertion of these alkyl ethylene species leads to ,-agostic complexes in which palladium can rapidly migrate along the chain ("chain-walking") through ,-elimination/readdition reactions. Trapping of branched alkyl complexes followed by insertion leads to formation of branches in the polymer chain. Polyethylenes formed exhibit branches-on-branches since chain-walking through tertiary centers is facile. [source] Cover Picture: (Adv. Synth.ADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 14-15 2009Catal. The cover picture, provided by Maurice S. Brookhart, shows an example of a cationic palladium diimine complex which catalyzes polymerization of ethylene to high molecular weight, highly branched polyethylene. The catalyst resting states are the alkyl ethylene complexes as modeled by the ethyl ethylene complex shown. Migratory insertion of these alkyl ethylene species leads to ,-agostic complexes in which palladium can rapidly migrate along the chain ("chain-walking") through ,-elimination/readdition reactions. Trapping of branched alkyl complexes followed by insertion leads to formation of branches in the polymer chain. Polyethylenes formed exhibit branches-on-branches since chain-walking through tertiary centers is facile. [source] Cover Picture: (Adv. Synth.ADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 13 2009Catal. The cover picture, provided by Maurice S. Brookhart, shows an example of a cationic palladium diimine complex which catalyzes polymerization of ethylene to high molecular weight, highly branched polyethylene. The catalyst resting states are the alkyl ethylene complexes as modeled by the ethyl ethylene complex shown. Migratory insertion of these alkyl ethylene species leads to ,-agostic complexes in which palladium can rapidly migrate along the chain ("chain-walking") through ,-elimination/readdition reactions. Trapping of branched alkyl complexes followed by insertion leads to formation of branches in the polymer chain. Polyethylenes formed exhibit branches-on-branches since chain-walking through tertiary centers is facile. [source] Cover Picture: (Adv. Synth.ADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 11-12 2009Catal. The cover picture, provided by Maurice S. Brookhart, shows an example of a cationic palladium diimine complex which catalyzes polymerization of ethylene to high molecular weight, highly branched polyethylene. The catalyst resting states are the alkyl ethylene complexes as modeled by the ethyl ethylene complex shown. Migratory insertion of these alkyl ethylene species leads to ,-agostic complexes in which palladium can rapidly migrate along the chain ("chain-walking") through ,-elimination/readdition reactions. Trapping of branched alkyl complexes followed by insertion leads to formation of branches in the polymer chain. Polyethylenes formed exhibit branches-on-branches since chain-walking through tertiary centers is facile. [source] Cover Picture: (Adv. Synth.ADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 10 2009Catal. The cover picture, provided by Maurice S. Brookhart, shows an example of a cationic palladium diimine complex which catalyzes polymerization of ethylene to high molecular weight, highly branched polyethylene. The catalyst resting states are the alkyl ethylene complexes as modeled by the ethyl ethylene complex shown. Migratory insertion of these alkyl ethylene species leads to ,-agostic complexes in which palladium can rapidly migrate along the chain ("chain-walking") through ,-elimination/readdition reactions. Trapping of branched alkyl complexes followed by insertion leads to formation of branches in the polymer chain. Polyethylenes formed exhibit branches-on-branches since chain-walking through tertiary centers is facile. [source] Cover Picture: (Adv. Synth.ADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 9 2009Catal. The cover picture, provided by Maurice S. Brookhart, shows an example of a cationic palladium diimine complex which catalyzes polymerization of ethylene to high molecular weight, highly branched polyethylene. The catalyst resting states are the alkyl ethylene complexes as modeled by the ethyl ethylene complex shown. Migratory insertion of these alkyl ethylene species leads to ,-agostic complexes in which palladium can rapidly migrate along the chain ("chain-walking") through ,-elimination/readdition reactions. Trapping of branched alkyl complexes followed by insertion leads to formation of branches in the polymer chain. Polyethylenes formed exhibit branches-on-branches since chain-walking through tertiary centers is facile. [source] Cover Picture: (Adv. Synth.ADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 7-8 2009Catal. The cover picture, provided by Maurice S. Brookhart, shows an example of a cationic palladium diimine complex which catalyzes polymerization of ethylene to high molecular weight, highly branched polyethylene. The catalyst resting states are the alkyl ethylene complexes as modeled by the ethyl ethylene complex shown. Migratory insertion of these alkyl ethylene species leads to ,-agostic complexes in which palladium can rapidly migrate along the chain ("chain-walking") through ,-elimination/readdition reactions. Trapping of branched alkyl complexes followed by insertion leads to formation of branches in the polymer chain. Polyethylenes formed exhibit branches-on-branches since chain-walking through tertiary centers is facile. [source] Cover Picture: (Adv. Synth.ADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 6 2009Catal. The cover picture, provided by Maurice S. Brookhart, shows an example of a cationic palladium diimine complex which catalyzes polymerization of ethylene to high molecular weight, highly branched polyethylene. The catalyst resting states are the alkyl ethylene complexes as modeled by the ethyl ethylene complex shown. Migratory insertion of these alkyl ethylene species leads to ,-agostic complexes in which palladium can rapidly migrate along the chain ("chain-walking") through ,-elimination/readdition reactions. Trapping of branched alkyl complexes followed by insertion leads to formation of branches in the polymer chain. Polyethylenes formed exhibit branches-on-branches since chain-walking through tertiary centers is facile. [source] Cover Picture: (Adv. Synth.ADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 5 2009Catal. The cover picture, provided by Maurice S. Brookhart, shows an example of a cationic palladium diimine complex which catalyzes polymerization of ethylene to high molecular weight, highly branched polyethylene. The catalyst resting states are the alkyl ethylene complexes as modeled by the ethyl ethylene complex shown. Migratory insertion of these alkyl ethylene species leads to ,-agostic complexes in which palladium can rapidly migrate along the chain ("chain-walking") through ,-elimination/readdition reactions. Trapping of branched alkyl complexes followed by insertion leads to formation of branches in the polymer chain. Polyethylenes formed exhibit branches-on-branches since chain-walking through tertiary centers is facile. [source] Cover Picture: (Adv. Synth.ADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 4 2009Catal. The cover picture, provided by Maurice S. Brookhart, shows an example of a cationic palladium diimine complex which catalyzes polymerization of ethylene to high molecular weight, highly branched polyethylene. The catalyst resting states are the alkyl ethylene complexes as modeled by the ethyl ethylene complex shown. Migratory insertion of these alkyl ethylene species leads to ,-agostic complexes in which palladium can rapidly migrate along the chain ("chain-walking") through ,-elimination/readdition reactions. Trapping of branched alkyl complexes followed by insertion leads to formation of branches in the polymer chain. Polyethylenes formed exhibit branches-on-branches since chain-walking through tertiary centers is facile. [source] Cover Picture: (Adv. Synth.ADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 3 2009Catal. The cover picture, provided by Maurice S. Brookhart, shows an example of a cationic palladium diimine complex which catalyzes polymerization of ethylene to high molecular weight, highly branched polyethylene. The catalyst resting states are the alkyl ethylene complexes as modeled by the ethyl ethylene complex shown. Migratory insertion of these alkyl ethylene species leads to ,-agostic complexes in which palladium can rapidly migrate along the chain ("chain-walking") through ,-elimination/readdition reactions. Trapping of branched alkyl complexes followed by insertion leads to formation of branches in the polymer chain. Polyethylenes formed exhibit branches-on-branches since chain-walking through tertiary centers is facile. [source] Cover Picture: (Adv. Synth.ADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 1-2 2009Catal. The cover picture, provided by Maurice S. Brookhart, shows an example of a cationic palladium diimine complex which catalyzes polymerization of ethylene to high molecular weight, highly branched polyethylene. The catalyst resting states are the alkyl ethylene complexes as modeled by the ethyl ethylene complex shown. Migratory insertion of these alkyl ethylene species leads to ,-agostic complexes in which palladium can rapidly migrate along the chain ("chain-walking") through ,-elimination/readdition reactions. Trapping of branched alkyl complexes followed by insertion leads to formation of branches in the polymer chain. Polyethylenes formed exhibit branches-on-branches since chain-walking through tertiary centers is facile. [source] A Density Functional Study of the Hydrogenation of Ketones Catalysed by Neutral Rhodium-Diphosphane ComplexesEUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 21 2006Francine Agbossou-Niedercorn Abstract The potential energy profile of RhI -catalysed hydrogenation of ketones has been computed for the simple model system [Rh{H3POCH2CH2N(H)PH3}(Cl)] using DFT calculations. The general sequence of the catalytic cycle involves coordination of the carbonyl derivative to the neutral RhI complex followed by oxidative addition of molecular hydrogen providing rhodium dihydride intermediates. The latter are converted into alkoxy hydrides by a migratory insertion reaction. Reductive elimination of the alcohol and substitution of the latter by the incoming substrate completes the catalyticcycle. Intermediates and transition states of all catalyticsteps have been located. Two isomeric derivatives bearingthe model substrate have been found for the [Rh{H3POCH2CH2N(H)PH3}(Cl)(H2CO)] complex. Eight diastereomeric pathways have been followed for the cis addition of molecular hydrogen to [Rh{H3POCH2CH2N(H)PH3}(Cl)(H2CO)] leading to eight distinct isomeric dihydride intermediates. Four dihydride complexes can be considered as the more accessible compounds. The site preference for migratory insertion and transition states discriminates the main path of the catalytic reaction. Migratory insertion to form the alkoxy hydride constitute the turn over limiting step of the process. The potential energy profile has been found to be smooth without excessive activation barriers. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2006) [source] FI Catalysts: A Molecular Zeolite for Olefin PolymerizationADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 10 2010Haruyuki Makio Abstract A bis(phenoxyimine) group 4 transition metal catalyst (now known as FI catalysts) can discern ethylene from a mixture of ethylene and propylene at more than 99% selectivity. Denisty function theory (DFT) calculations revealed a spatially confined reaction site in the transition states of the migratory insertion which is just the right size for an ethylene molecule but too small for a propylene one. The substituents adjacent to the phenoxy-oxygens are of crucial importance in developing the size/shape-selectivity. [source] Stereoselective Synthesis of Metalated Cyclobutyl DerivativesADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 7-8 2009Einav Tsoglin Abstract Treatment of Z -vinyl carbamates with dicyclopentadienyl(diethyl)zirconium [Et2ZrCp2] leads to cyclobutyl-zirconocene derivatives in good yields and as a unique diastereoisomer. The reaction proceeds through a carbometalative ring-expansion followed by an intramolecular migratory insertion. [source] |