Home About us Contact | |||
Migratory Fish (migratory + fish)
Selected AbstractsRelationships between water temperatures and upstream migration, cold water refuge use, and spawning of adult bull trout from the Lostine River, Oregon, USAECOLOGY OF FRESHWATER FISH, Issue 1 2010P. J. Howell Howell PJ, Dunham JB, Sankovich PM. Relationships between water temperatures and upstream migration, cold water refuge use, and spawning of adult bull trout from the Lostine River, Oregon, USA. Ecology of Freshwater Fish 2010: 19: 96,106. This article is a US Government work and is in the public domain in the USA Abstract,,, Understanding thermal habitat use by migratory fish has been limited by difficulties in matching fish locations with water temperatures. To describe spatial and temporal patterns of thermal habitat use by migratory adult bull trout, Salvelinus confluentus, that spawn in the Lostine River, Oregon, we employed a combination of archival temperature tags, radio tags, and thermographs. We also compared temperatures of the tagged fish to ambient water temperatures to determine if the fish were using thermal refuges. The timing and temperatures at which fish moved upstream from overwintering areas to spawning locations varied considerably among individuals. The annual maximum 7-day average daily maximum (7DADM) temperatures of tagged fish were 16,18 °C and potentially as high as 21 °C. Maximum 7DADM ambient water temperatures within the range of tagged fish during summer were 18,25 °C. However, there was no evidence of the tagged fish using localized cold water refuges. Tagged fish appeared to spawn at 7DADM temperatures of 7,14 °C. Maximum 7DADM temperatures of tagged fish and ambient temperatures at the onset of the spawning period in late August were 11,18 °C. Water temperatures in most of the upper Lostine River used for spawning and rearing appear to be largely natural since there has been little development, whereas downstream reaches used by migratory bull trout are heavily diverted for irrigation. Although the population effects of these temperatures are unknown, summer temperatures and the higher temperatures observed for spawning fish appear to be at or above the upper range of suitability reported for the species. [source] Effect of habitat fragmentation on spawning migration of brown trout (Salmo trutta L.)ECOLOGY OF FRESHWATER FISH, Issue 3 2006C. Gosset Abstract , Human-induced habitat alteration is one of the main causes of the decline of freshwater fish populations. The watershed of the River Bidasoa (Spain) is an example of heavily fragmented habitat. The local brown trout (Salmo trutta L.) population is disturbed, with evidence of poor recruitment as well as low adult densities in the main stem. Forty male and female adult migratory trout were tagged with external or internal radio transmitters and released. Fixed stations with data loggers and mobile antennae were used with daily surveys to track fish movements during the migration and spawning period (3 months). Migration distances did not exceed 10 km, and half of the fish never entered a tributary in the study area. Fragmentation because of weirs on the main stem apparently prevented fish from reaching their spawning destination. Fish that entered the tributaries were first confronted with an accessibility problem because of low discharge. However, each fish chose one tributary, without making attempts to run up in other tributaries. Once in the tributary, fish were restrained in their upstream movements by dams. The study area appeared to be isolated from the vast upper part of the watershed. Within the study area, upper parts of tributaries also seemed strongly disconnected from the main stem. This study illustrates the negative impact of river fragmentation on S. trutta migration pattern. Population sustainability can be directly affected through the low availability of spawning grounds for migratory fish. Long-term effects of fragmentation may cause reproductive isolation within watersheds, which in the case of trout also means isolated phenotypic population units. [source] Conservation of the Biodiversity of Brazil's Inland WatersCONSERVATION BIOLOGY, Issue 3 2005ANGELO A. AGOSTINHO Threatened freshwater species include 44 species of invertebrates (mostly Porifera) and 134 fishes (mostly Cyprinodontiformes, Rivulidae), primarily distributed in south and southeastern Brazil. Reasons for the declines in biodiversity in Brazilian inland waters include pollution and eutrophication, siltation, impoundments and flood control, fisheries, and species introductions. These problems are more conspicuous in the more-developed regions. The majority of protected areas in Brazil have been created for terrestrial fauna and flora, but they also protect significant water bodies and wetlands. As a result, although very poorly documented, these areas are of great importance for aquatic species. A major and pressing challenge is the assessment of the freshwater biodiversity in protected areas and surveys to better understand the diversity and geography of freshwater species in Brazil. The concept of umbrella species (e.g., certain migratory fishes) would be beneficial for the protection of aquatic biodiversity and habitats. The conservation and improved management of river corridors and associated floodplains and the maintenance of their hydrological integrity is fundamental to preserving Brazil's freshwater biodiversity and the health of its aquatic resources. Resumen:,En términos de biodiversidad, las aguas interiores de Brasil son de enorme importancia global para Algae (25% de las especies del mundo), Porifera (Demospongiae, 33%), Rotifera (25%), Cladocera (Branchiopoda, 20%) y peces (21%). Las especies dulceacuícolas amenazadas incluyen a 44 especies de invertebrados (la mayoría Porifera) y 134 de peces (en su mayor parte Cyprinodontiformes, Rivulidae), distribuidos principalmente en el sur y sureste de Brasil. Las razones de la declinación en la biodiversidad de aguas interiores de Brasil incluyen contaminación y eutrofización, sedimentación, represas y control de inundaciones, pesquerías e introducción de especies. Estos problemas son más conspicuos en las regiones más desarrolladas. La mayoría de las áreas protegidas en Brasil han sido creadas para fauna y flora terrestres, pero también protegen a considerable número de cuerpos de agua y humedales y, aunque muy deficientemente documentado, como tales son de gran importancia para las especies acuáticas. La evaluación de la biodiversidad dulceacuícola en áreas protegidas y muestreos para un mejor entendimiento de la diversidad y geografía de especies dulceacuícolas de Brasil son un reto mayor y apremiante. El concepto de especies sombrilla (e.g., ciertos peces migratorios) sería benéfico para la protección de biodiversidad y hábitats acuáticos. La conservación y perfeccionamiento de la gestión de corredores fluviales y las llanuras de inundación asociadas y el mantenimiento de su integridad hidrológica son fundamentales para preservar la biodiversidad dulceacuícola de Brasil y la salud de sus recursos acuáticos. [source] Distribution of migratory fishes and shrimps along multivariate gradients in tropical island streamsJOURNAL OF FISH BIOLOGY, Issue 2 2001E. Fièvet Among the 16 species of fishes and shrimps studied at 51 sites along several small streams at Basse Terre, Guadeloupe, Lesser Antilles, more than 60% showed a spatial distribution significantly influenced by environmental conditions. These included altitude, basin size, terrestrial vegetation and land use. However, the range of the species habitat was generally high, except for three species limited to the downstream stretches (two fishes and one shrimp). The habitat characteristics of fish and shrimp species tended to differ, but the difference was not significant (P<0·05). On the contrary, the habitat characteristics of amphidromous and catadromous species clearly differed, with a lower occurrence at the most elevated sites of catadromous species than amphidromous species. [source] |