Migration Rates (migration + rate)

Distribution by Scientific Domains
Distribution within Life Sciences

Kinds of Migration Rates

  • high migration rate
  • low migration rate


  • Selected Abstracts


    Estimated migration rates under scenarios of global climate change

    JOURNAL OF BIOGEOGRAPHY, Issue 7 2002
    Jay R. Malcolm
    Aim Greenhouse-induced warming and resulting shifts in climatic zones may exceed the migration capabilities of some species. We used fourteen combinations of General Circulation Models (GCMs) and Global Vegetation Models (GVMs) to investigate possible migration rates required under CO2 -doubled climatic forcing. Location Global. Methods Migration distances were calculated between grid cells of future biome type x and nearest same-biome-type cells in the current climate. In `base-case' calculations, we assumed that 2 × CO2 climate forcing would occur in 100 years, we used ten biome types and we measured migration distances as straight-line distances ignoring water barriers and human development. In sensitivity analyses, we investigated different time periods of 2 × CO2 climate forcing, more narrowly defined biomes and barriers because of water bodies and human development. Results In the base-case calculations, average migration rates varied significantly according to the GVM used (BIOME3 vs. MAPSS), the age of the GCM (older- vs. newer-generation GCMs), and whether or not GCMs included sulphate cooling or CO2 fertilization effects. However, high migration rates (, 1000 m year,1) were relatively common in all models, consisting on average of 17% grid cells for BIOME3 and 21% for MAPSS. Migration rates were much higher in boreal and temperate biomes than in tropical biomes. Doubling of the time period of 2 × CO2 forcing reduced these areas of high migration rates to c. 12% of grid cells for both BIOME3 and MAPSS. However, to obtain migration rates in the Boreal biome that were similar in magnitude to those observed for spruce when it followed the retreating North American Glacier, a radical increase in the period of warming was required, from 100 to >1000 years. A reduction in biome area by an order of magnitude increased migration rates by one to three orders of magnitude, depending on the GVM. Large water bodies and human development had regionally important effects in increasing migration rates. Main conclusions In conclusion, evidence from coupled GCMs and GVMs suggests that global warming may require migration rates much faster than those observed during post-glacial times and hence has the potential to reduce biodiversity by selecting for highly mobile and opportunistic species. Several poorly understood factors that are expected to influence the magnitude of any such reduction are discussed, including intrinsic migrational capabilities, barriers to migration, the role of outlier populations in increasing migration rates, the role of climate in setting range limits and variation in species range sizes. [source]


    Survival rates in a natural population of the damselfly Ceriagrion tenellum: effects of sex and female phenotype

    ECOLOGICAL ENTOMOLOGY, Issue 4 2001
    Jose A. Andrés
    Summary 1. Ceriagrion tenellum females show genetic colour polymorphism. Androchrome (erythrogastrum) females are brightly (male-like) coloured while gynochrome females (typica and melanogastrum) show cryptic colouration. 2. Several hypotheses have been proposed to explain the existence of more than one female morph in damselfly populations. The reproductive isolation and intraspecific mimicry hypotheses predict greater survival of gynochrome females, while the density dependent hypothesis predicts no differential survival between morphs. 3. Mature males had greater recapture probability than females while the survival probability was similar for both sexes. Survival and recapture rates were similar for androchrome and gynochrome females. 4. Gynochrome females showed greater mortality or migration rate than androchrome females during the pre-reproductive period. This result is not predicted by the above hypotheses or by the null hypothesis that colour polymorphism is only maintained by random factors: founder effects, genetic drift, and migration. [source]


    Antagonistic effects of seed dispersal and herbivory on plant migration

    ECOLOGY LETTERS, Issue 3 2006
    Mark Vellend
    Abstract The two factors that determine plant migration rates , seed dispersal and population growth , are generally treated independently, despite the fact that many animals simultaneously enhance plant migration rate via seed dispersal, and decrease it via negative effects of herbivory on population growth. Using extensive empirical data, we modelled the antagonistic effects of seed dispersal and herbivory by white-tailed deer on potential migration rates of Trillium grandiflorum, a forest herb in eastern North America. This novel antagonistic interaction is illustrated by maximum migration rates occurring at intermediate, but low herbivory (< 15%). Assuming herbivory < 20% and favourable conditions for population growth during post-glacial migration, seed dispersal by deer can explain rates of migration achieved in the past, in contrast to previous models of forest herb migration. However, relatively unfavourable conditions for population growth and increasingly intense herbivory by deer may compromise plant migration in the face of present and future climate change. [source]


    Local adaptation and the geometry of host,parasite coevolution

    ECOLOGY LETTERS, Issue 2 2002
    Sylvain Gandon
    Metapopulation dynamics can strongly affect the ecological and evolutionary processes involved in host,parasite interactions. Here, I analyse a deterministic host,parasite coevolutionary model and derive analytic approximations for the level of local adaptation as a function of (1) host migration rate, (2) parasite migration rate, (3) parasite specificity and (4) parasite virulence. This analysis confirms the results of previous simulation studies: the difference between host and parasite migration rates may explain the level of local adaptation of both species. I also show that both higher specificity and higher virulence generally lead to higher levels of local adaptation of the species which is already ahead in the coevolutionary arms race. The present analysis also provides a simple geometric interpretation for local adaptation which captures the complexity of the temporal dynamics of host,parasite coevolution. [source]


    Universal method for synthesis of artificial gel antibodies by the imprinting approach combined with a unique electrophoresis technique for detection of minute structural differences of proteins, viruses, and cells (bacteria).

    ELECTROPHORESIS, Issue 23 2006
    III: Gel antibodies against cells (bacteria)
    Abstract Artificial antibodies in the form of gel granules were synthesized from the monomers acrylamide and N,N'-methylenebisacrylamide by the imprinting method in the presence of Echerichia coli bacteria as template. The electrophoretic migration velocities of the gel antibodies (i),saturated with the antigen (Escherichia,coli MRE-600), (ii),freed of the antigen, and (iii),resaturated with bacteria, were determinated by electrophoresis in a rotating narrow-bore tube of 245,mm length and the 2.5 and 9.6,mm inner and outer diameters, respectively. Removal of bacteria from the gel antibodies was made by treatment with enzymes, followed by washing with SDS and buffer. Gel granules becoming charged by adsorption of bacteria move in an electrical field. We obtained a significant selectivity of gel antibodies for E.,coli MRE-600, since the granules did not interact with Lactococcus lactis; and when E.,coli BL21 bacteria were added to the gels selective for E.,coli MRE-600, a significant difference in the migration rate of the complexes formed with the two strains was observed indicating the ability of differentiation between the two strains. The gel antibodies can be used repeatedly. The new imprinting method for the synthesis of artificial gel antibodies against bioparticles described herein, and the classical electrophoretic analysis technique employed, thus represent , when combined , a new approach to distinguish between different types and strains of bacteria. The application area can certainly be extended to cover other classes of cells. [source]


    THE PHENOTYPIC VARIANCE WITHIN PLASTIC TRAITS UNDER MIGRATION-MUTATION-SELECTION BALANCE

    EVOLUTION, Issue 6 2006
    Xu-Sheng Zhang
    Abstract How phenotypic variances of quantitative traits are influenced by the heterogeneity in environment is an important problem in evolutionary biology. In this study, both genetic and environmental variances in a plastic trait under migration-mutation-stabilizing selection are investigated. For this, a linear reaction norm is used to approximate the mapping from genotype to phenotype, and a population of clonal inheritance is assumed to live in a habitat consisting of many patches in which environmental conditions vary among patches and generations. The life cycle is assumed to be selection-reproduction-mutation-migration. Analysis shows that phenotypic plasticity is adaptive if correlations between the optimal phenotype and environment have become established in both space and/or time, and it is thus possible to maintain environmental variance (VE) in the plastic trait. Under the special situation of no mutation but maximum migration such that separate patches form an effective single-site habitat, the genotype that maximizes the geometric mean fitness will come to fixation and thus genetic variance (VG) cannot be maintained. With mutation and/or restricted migration, VG can be maintained and it increases with mutation rate but decreases with migration rate; whereas VE is little affected by them. Temporal variation in environmental quality increases VG while its spatial variance decreases VG. Variation in environmental conditions may decrease the environmental variance in the plastic trait. [source]


    EVOLUTION OF MIGRATION UNDER KIN SELECTION AND LOCAL ADAPTATION

    EVOLUTION, Issue 1 2005
    Sylvain Billiard
    Abstract We present here a stochastic two-locus, two-habitat model for the evolution of migration with local adaptation and kin selection. One locus determines the migration rate while the other causes local adaptation. We show that the opposing forces of kin competition and local adaptation can lead to the existence of one or two convergence stable migration rates, notably depending on the recombination rate between the two loci. We show that linkage between migration and local adaptation loci has two antagonist effects: when linkage is tight, cost of local adaptation increases, leading to smaller equilibrium migration rates. However, when linkage is tighter, the population structure at the migration locus tends to be very high because of the indirect selection, and thus equilibrium migration rates increases. This result, qualitatively different from results obtained with other models of migration evolution, indicates that ignoring drift or the detail of the genetic architecture may lead to incorrect conclusions. [source]


    THE EFFECTS OF SUBDIVISION ON THE GENETIC DIVERGENCE OF POPULATIONS AND SPECIES

    EVOLUTION, Issue 4 2000
    John Wakeley
    Abstract. An island model of migration is used to study the effects of subdivision within populations and species on sample genealogies and on between-population or between-species measures of genetic variation. The model assumes that the number of demes within each population or species is large. When populations (or species), connected either by gene flow or historical association, are themselves subdivided into demes, changes in the migration rate among demes alter both the structure of genealogies and the time scale of the coalescent process. The time scale of the coalescent is related to the effective size of the population, which depends on the migration rate among demes. When the migration rate among demes within populations is low, isolation (or speciation) events seem more recent and migration rates among populations seem higher because the effective size of each population is increased. This affects the probability of reciprocal monophyly of two samples, the chance that a gene tree of a sample matches the species tree, and relative likelihoods of different types of polymorphic sites. It can also have a profound effect on the estimation of divergence times. [source]


    Capturing Complex Protein Gradients on Biomimetic Hydrogels for Cell-Based Assays

    ADVANCED FUNCTIONAL MATERIALS, Issue 21 2009
    Steffen Cosson
    Abstract A versatile strategy to rapidly immobilize complex gradients of virtually any desired protein on soft poly(ethylene glycol) (PEG) hydrogel surfaces that are reminiscent of natural extracellular matrices (ECM) is reported. A microfluidic chip is used to generate steady-state gradients of biotinylated or Fc-tagged fusion proteins that are captured and bound to the surface in less than 5,min by NeutrAvidin or ProteinA, displayed on the surface. The selectivity and orthogonality of the binding schemes enables the formation of parallel and orthogonal overlapping gradients of multiple proteins, which is not possible on conventional cell culture substrates. After patterning, the hydrogels are released from the microfluidic chip and used for cell culture. This novel platform is validated by conducting single-cell migration experiments using time-lapse microscopy. The orientation of cell migration, as well as the migration rate of primary human fibroblasts, depends on the concentration of an immobilized fibronectin fragment. This technique can be readily applied to other proteins to address a wealth of biological questions with different cell types. [source]


    Maquiladoras and U.S.-Bound Migration in Central Mexico

    GROWTH AND CHANGE, Issue 2 2001
    Richard C. Jones
    Over the past one and a half decades, smaller cities and nonmetropolitan areas in Mexico have attracted manufacturing plants, led by the export manufacturing sector. Maquiladoras in particular are increasingly locating their plants in such places in the "deep interior" Mexico,outside of the border states. Using 1980 and 1990 Mexican census data for 19 growth centers and 27 high-emigration municipios (counties) in Central Mexico, this paper suggests that foreign-owned assembly (maquiladora) jobs decentralized significantly over the 1980s, locating closer to emigrant municipios. An examination of 17 emigrant municipios in the industrialized states of Jalisco and Guanajuato found that an emigrant municipio's accessibility to maquiladora jobs, and jobs indirectly related to maquiladora growth, was positively related to its overall employment growth, which was, in turn, negatively related to its U.S. migration rate over the decade. Although the migration reduction inherent in these relationships is relatively small, it could be accelerated by U.S. and Mexican policies giving incentives for more peripheral locations of export-oriented and other manufacturing. [source]


    Wolbachia -induced unidirectional cytoplasmic incompatibility and the stability of infection polymorphism in parapatric host populations

    JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 2 2007
    M. FLOR
    Abstract Wolbachia are intracellular, maternally inherited bacteria that are widespread among arthropods and commonly induce a reproductive incompatibility between infected male and uninfected female hosts known as unidirectional cytoplasmic incompatibility (CI). If infected and uninfected populations occur parapatrically, CI acts as a post-zygotic isolation barrier. We investigate the stability of such infection polymorphisms in a mathematical model with two populations linked by migration. We determine critical migration rates below which infected and uninfected populations can coexist. Analytical solutions of the critical migration rate are presented for mainland-island models. These serve as lower estimations for a more general model with two-way migration. The critical migration rate is positive if either Wolbachia causes a fecundity reduction in infected female hosts or its transmission is incomplete, and is highest for intermediate levels of CI. We discuss our results with respect to local adaptations of the Wolbachia host, speciation, and pest control. [source]


    Flavor Migration Out of Food Matrices: II.

    JOURNAL OF FOOD SCIENCE, Issue 3 2003
    Quantifying Flavor Migration from Dough Undergoing Isothermal Heating
    ABSTRACT A new approach using cold-trap, on-line sampling was applied to investigate migration rate of limonene, tert-butylbenzene, and pyrazine in a flour dough matrix. Flavor equilibrium concentration and migration rates were shown to be strong functions of initial concentration. Due to encapsulation of flavor compounds at lower moisture content, it was not possible to totally extract the flavor compounds from the matrix by solvent extraction. The cold-trap online sampling method could be satisfactorily used to generate data on flavor migration rates in dough matrices. [source]


    Grain aphid population structure: no effect of fungal infections in a 2-year field study in Denmark

    AGRICULTURAL AND FOREST ENTOMOLOGY, Issue 3 2008
    A. B. Jensen
    Abstract 1,Sitobion avenae (F.) is a serious pest in Danish cereal crops. To understand the population genetic structure, aphids were sampled in seven different winter wheat (Triticum sativum Lamarck) fields throughout Denmark. The aphids were genotyped with seven microsatellite markers. In total, 2075 aphids were collected and 1203 of these were genotyped. 2,The Danish S. avenae populations displayed very high genotypic diversity, high percentages of unique genotypes and low linkage disequilibria; this is likely to be a result of genetic recombination encompassed by their holocyclic lifestyle. The populations showed very limited differentiation and no sign of isolation by distance. Almost all the genetic variation was ascribed within the populations rather than between populations, probably due to a high migration rate at approximate 10% per generation. 3,Seasonal changes in clonal diversity and distribution of asexual summer generations of S. avenae within the infestation period in a single winter wheat field were followed over two consecutive years by weekly sampling from 60 plots each of 20 × 20 m. Clonal diversity was high in all samples with no dominant clonal lineages and no significant difference in the genotypic diversity between weeks or between years. However, a temporal genetic differentiation effect, throughout the infestation, suggests that selective factors or high temporal migration play an important role in shaping the genetic structure S. avenae. 4,Analyses of fungal infected and uninfected aphids were performed to test whether some clonal linage were more often infected by fungi from the Entomophthorales under field conditions. In total, 54 progeny from aphids with Entomophthorales were genotyped and compared with 422 uninfected aphid genotypes. The Entomophthorales-infected aphid genotypes did not cluster out together, suggesting that these fungal pathogens did not affect the population differentiation or clonal distribution of S. avenae in a Danish agroecosystem. 5,Our findings indicate that S. avenae populations can be controlled using conservation biological control [source]


    When can ecological speciation be detected with neutral loci?

    MOLECULAR ECOLOGY, Issue 11 2010
    XAVIER THIBERT-PLANTE
    Abstract It is not yet clear under what conditions empirical studies can reliably detect progress toward ecological speciation through the analysis of allelic variation at neutral loci. We use a simulation approach to investigate the range of parameter space under which such detection is, and is not, likely. We specifically test for the conditions under which divergent natural selection can cause a ,generalized barrier to gene flow' that is present across the genome. Our individual-based numerical simulations focus on how population divergence at neutral loci varies in relation to recombination rate with a selected locus, divergent selection on that locus, migration rate and population size. We specifically test whether genetic differences at neutral markers are greater between populations in different environments than between populations in similar environments. We find that this expected signature of ecological speciation can be detected under part of the parameter space, most consistently when divergent selection is strong and migration is intermediate. By contrast, the expected signature of ecological speciation is not reliably detected when divergent selection is weak or migration is low or high. These findings provide insights into the strengths and weaknesses of using neutral markers to infer ecological speciation in natural systems. [source]


    Interaction of landscape and life history attributes on genetic diversity, neutral divergence and gene flow in a pristine community of salmonids

    MOLECULAR ECOLOGY, Issue 23 2009
    DANIEL GOMEZ-UCHIDA
    Abstract Landscape genetics holds promise for the forecasting of spatial patterns of genetic diversity based on key environmental features. Yet, the degree to which inferences based on single species can be extended to whole communities is not fully understood. We used a pristine and spatially structured community of three landlocked salmonids (Salvelinus fontinalis, Salmo salar, and Salvelinus alpinus) from Gros Morne National Park (Newfoundland, Canada) to test several predictions on the interacting effects of landscape and life history variation on genetic diversity, neutral divergence, and gene flow (m, migration rate). Landscape factors consistently influenced multispecies genetic patterns: (i) waterfalls created strong dichotomies in genetic diversity and divergence between populations above and below them in all three salmonids; (ii) contemporary m decreased with waterway distance in all three species, while neutral genetic divergence (,) increased with waterway distance, albeit in only two taxa; (iii) river flow generally produced downstream-biased m between populations when waterfalls separated these, but not otherwise. In contrast, we expected differential life history to result in a hierarchy of neutral divergence (S. salar > S. fontinalis > S. alpinus) based on disparities in dispersal abilities and population size from previous mark-recapture studies. Such hierarchy additionally matched varying degrees of spatial genetic structure among species revealed through individual-based analyses. We conclude that, whereas key landscape attributes hold power to predict multispecies genetic patterns in equivalent communities, they are likely to interact with species-specific life history attributes such as dispersal, demography, and ecology, which will in turn affect holistic conservation strategies. [source]


    FAST-TRACK: A southern California freeway is a physical and social barrier to gene flow in carnivores

    MOLECULAR ECOLOGY, Issue 7 2006
    SETH P. D. RILEY
    Abstract Roads present formidable barriers to dispersal. We examine movements of two highly mobile carnivores across the Ventura Freeway near Los Angeles, one of the busiest highways in the United States. The two species, bobcats and coyotes, can disappear from habitats isolated and fragmented by roads, and their ability to disperse across the Ventura Freeway tests the limits of vertebrates to overcome anthropogenic obstacles. We combine radio-telemetry data and genetically based assignments to identify individuals that have crossed the freeway. Although the freeway is a significant barrier to dispersal, we find that carnivores can cross the freeway and that 5,32% of sampled carnivores crossed over a 7-year period. However, despite moderate levels of migration, populations on either side of the freeway are genetically differentiated, and coalescent modelling shows their genetic isolation is consistent with a migration fraction less than 0.5% per generation. These results imply that individuals that cross the freeway rarely reproduce. Highways and development impose artificial home range boundaries on territorial and reproductive individuals and hence decrease genetically effective migration. Further, territory pile-up at freeway boundaries may decrease reproductive opportunities for dispersing individuals that do manage to cross. Consequently, freeways are filters favouring dispersing individuals that add to the migration rate but little to gene flow. Our results demonstrate that freeways can restrict gene flow even in wide-ranging species and suggest that for territorial animals, migration levels across anthropogenic barriers need to be an order of magnitude larger than commonly assumed to counteract genetic differentiation. [source]


    Sampling within the genome for measuring within-population diversity: trade-offs between markers

    MOLECULAR ECOLOGY, Issue 7 2002
    S. Mariette
    Abstract Experimental results of diversity estimates in a set of populations often exhibit contradictory patterns when different marker systems are used. Using simulations we identified potential causes for these discrepancies. These investigations aimed also to detect whether different sampling strategies of markers within the genome resulted in different estimates of the diversity at the whole genome level. The simulations consisted in generating a set of populations undergoing various evolutionary scenarios which differed by population size, migration rate and heterogeneity of gene flow. Population diversity was then computed for the whole genome and for subsets of loci corresponding to different marker techniques. Rank correlation between the two measures of diversity were investigated under different scenarios. We showed that the heterogeneity of genetic diversity either between loci (genomic heterogeneity, GH) or among populations (population heterogeneity, PH) varied greatly according to the evolutionary scenario considered. Furthermore, GH and PH were major determinants of the level of rank correlation between estimates of genetic diversities obtained using different kinds of markers. We found a strong positive relationship between the level of the correlation and PH, whatever the marker system. It was also shown that, when GH values were constantly low during generations, a reduced number of microsatellites was enough to predict the diversity of the whole genome, whereas when GH increased, more loci were needed to predict the diversity and amplified fragment length polymorphism markers would be more recommended in this case. Finally the results are discussed to recommend strategies for gene diversity surveys. [source]


    estim 1.0: a computer program to infer population parameters from one- and two-locus gene identity probabilities

    MOLECULAR ECOLOGY RESOURCES, Issue 4 2001
    R. Vitalis
    Abstract Estimating effective population size is an important issue in population and conservation genetics. Recently, we proposed a new method to infer effective size and migration rate from one- and two-locus identity probability measures. We now announce the release of a user-friendly Microsoft® Windows program that uses this method to provide joint estimates of local effective population size and immigration rate for each subpopulation in a population genetics data set. [source]


    Numerical simulations of type III planetary migration , I. Disc model and convergence tests

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 1 2008
    A. Pepli
    ABSTRACT We investigate the fast (type III) migration regime of high-mass protoplanets orbiting in protoplanetary discs. This type of migration is dominated by corotational torques. We study the details of flow structure in the planet's vicinity, the dependence of migration rate on the adopted disc model and the numerical convergence of models (independence of certain numerical parameters such as gravitational softening). We use two-dimensional hydrodynamical simulations with adaptive mesh refinement, based on the flash code with improved time-stepping scheme. We perform global disc simulations with sufficient resolution close to the planet, which is allowed to freely move throughout the grid. We employ a new type of equation of state in which the gas temperature depends on both the distance to the star and planet, and a simplified correction for self-gravity of the circumplanetary gas. We find that the migration rate in the type III migration regime depends strongly on the gas dynamics inside the Hill sphere (Roche lobe of the planet) which, in turn, is sensitive to the aspect ratio of the circumplanetary disc. Furthermore, corrections due to the gas self-gravity are necessary to reduce numerical artefacts that act against rapid planet migration. Reliable numerical studies of type III migration thus require consideration of both the thermal and the self-gravity corrections, as well as a sufficient spatial resolution and the calculation of disc,planet attraction both inside and outside the Hill sphere. With this proviso, we find type III migration to be a robust mode of migration, astrophysically promising because of a speed much faster than in the previously studied modes of migration. [source]


    USING RESERVES TO PROTECT FISH AND WILDLIFE SIMPLIFIED MODELING APPROACHES

    NATURAL RESOURCE MODELING, Issue 2 2005
    OLA FLAATEN
    ABSTRACT. This paper investigates theoretically to what extent a nature reserve may protect a uniformly distributed population of fish or wildlife against negative effects of harvesting. Two objectives of this protection are considered: avoidance of population extinction and maintenance of population, at or above a given precautionary population level. The pre-reserve population is assumed to follow the logistic growth law and two models for post-reserve population dynamics are formulated and discussed. For Model A by assumption the logistic growth law with a common carrying capacity is valid also for the post-reserve population growth. In Model B, it is assumed that each sub-population has its own carrying capacity proportionate to its distribution area. For both models, migration from the high-density area to the low-density area is proportional to the density difference. For both models there are two possible outcomes, either a unique globally stable equilibrium, or extinction. The latter may occur when the exploitation effort is above a threshold that is derived explicitly for both models. However, when the migration rate is less than the growth rate both models imply that the reserve can be chosen so that extinction cannot occur. For the opposite case, when migration is large compared to natural growth, a reserve as the only management tool cannot assure survival of the population, but the specific way it increases critical effort is discussed. [source]


    Scale-dependence of movement rates in stream invertebrates

    OIKOS, Issue 1 2004
    Göran Englund
    We used analytical models and random walk simulations in a one-dimensional habitat to study the scale-dependence of migration rates in stream invertebrates. Our models predict that per capita migration rate is inversely proportional to patch length when patches are large compared to the scale of movements. When patches are small the scale-dependence is weaker and primarily determined by the length of individual movements (steps) relative to patch size. Laboratory experiments using isopods (Asellus aquaticus L.) and mayfly nymphs (Baetis sp.) confirmed that the strength of the scale-dependence decreased with increasing step length. For the case when step length distributions follow an exponential probability distribution, which is often the case for stream organisms, we provide a simple model that allows the scale-dependence to be predicted from the mean step length. We fitted this model to published field data on drift densities at different downstream distances from a net that blocks the drift from upstream areas. Agreement between model and data was excellent in most cases. We then used already published data on the length of induced drift movements to predict the scale-dependence that was observed in block experiments performed in the same system. Predicted and observed scale-dependence showed very close agreement. We conclude that our models and published data on drift distances can be used to calculate the expected scale-dependence of per capita emigration rates for a large number of taxa under a wide range of environmental conditions. [source]


    Influence of Cold Plasma Atmospheric Jet on Surface Integrin Expression of Living Cells

    PLASMA PROCESSES AND POLYMERS, Issue 3-4 2010
    Alexey Shashurin
    Abstract The effects induced in cells due to treatment with cold atmospheric plasma jet are studied. Cell migration rate is measured by means of time-lapse microscopy. In order to characterize cell surface integrin expression, the fluorescent response of cells after surface integrins are stained with specific antibodies is measured by flow cytometry. We show that treatment of cells with plasma jet affects the cells on sub-cellular level, namely decreases expression of cell surface integrins (,1 and ,v integrins were tested). This change in integrin expression might be the original cause for the effects observed on cellular level, such as reduced cell migration rate and cell detachment observed experimentally. [source]


    Mitochondrial DNA variability among eight Tikúna villages: Evidence for an intratribal genetic heterogeneity pattern

    AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, Issue 3 2009
    Celso Teixeira Mendes-Junior
    Abstract To study the genetic structure of the Tikúna tribe, four major Native American mitochondrial DNA (mtDNA) founder haplogroups were analyzed in 187 Amerindians from eight Tikúna villages located in the Brazilian Amazon. The central position of these villages in the continent makes them relevant for attempts to reconstruct population movements in South America. In this geographic region, there is particular concern regarding the genetic structure of the Tikúna tribe, formerly designated "enigmatic" due to its remarkable degree of intratribal homogeneity and the scarcity of private protein variants. In spite of its large population size and geographic distribution, the Tikúna tribe presents marked genetic and linguistic isolation. All individuals presented indigenous mtDNA haplogroups. An intratribal genetic heterogeneity pattern characterized by two highly homogeneous Tikúna groups that differ considerably from each other was observed. Such a finding was unexpected, since the Tikúna tribe is characterized by a social system that favors intratribal exogamy and patrilocality that would lead to a higher female migration rate and homogenization of the mtDNA gene pool. Demographic explosions and religious events, which significantly changed the sizes and compositions of many Tikúna villages, may be reflected in the genetic results presented here. Am J Phys Anthropol 2009. © 2009 Wiley-Liss, Inc. [source]


    Metapopulation viability of the marsupial Micoureus demerarae in small Atlantic forest fragments in south-eastern Brazil

    ANIMAL CONSERVATION, Issue 3 2000
    Daniel Brito
    A population viability analysis (PVA) was carried out for populations of the arboreal didelphid Micoureus demerarae in eight small (1.5,15.0 ha) forest fragments in south-eastern Brazil. Analysis was based on field data obtained through demographic studies carried out since 1995. Populations are small, but connected by dispersing individuals, thus forming a metapopulation. Frequency of catastrophic fires was estimated from the Reserve's historical records. We used the computer package VORTEX for all analyses. All populations and the metapopulation were found to be endangered within 100 years (extinction probability > 0.98). A sensitivity analysis was run varying six parameters: three demographic (sex ratio, migration and mortality rates), two environmental (K, fire frequency) and one genetic (level of inbreeding depression). Genetics, K, mortality rates and sex ratio seemed to play major roles to population persistence, whereas catastrophes and migration rates had a secondary role. Among demographic factors, extinction rate was least sensitive to migration rate. Micoureus demerarae can be used as a model species, thus improving our knowledge of how extinction-prone populations of neotropical arboreal marsupials in forest fragments might be, and which management actions could decrease such risks. [source]


    Y-chromosome biallelic polymorphisms and Native American population structure

    ANNALS OF HUMAN GENETICS, Issue 4 2002
    M.-C. BORTOLINI
    It has been proposed that women had a higher migration rate than men throughout human evolutionary history. However, in a recent study of South American natives using mtDNA restriction fragment polymorphisms and Y-chromosome microsatellites we failed to detect a significant difference in estimates of migration rates between the sexes. As the high mutation rate of microsatellites might affect estimates of population structure, we now examine biallelic polymorphisms in both mtDNA and the Y-chromosome. Analyses of these markers in Amerinds from North, Central and South America agree with our previous findings in not supporting a higher migration rate for women in these populations. Furthermore, they underline the importance of genetic drift in the evolution of Amerinds and suggest the existence of a North to South gradient of increasing drift in the Americas. [source]


    Lung cancer A549 cells migrate directionally in DC electric fields with polarized and activated EGFRs

    BIOELECTROMAGNETICS, Issue 1 2009
    Xiaolong Yan
    Abstract Endogenous direct-current electric fields (dcEFs) occur in vivo in the form of epithelial transcellular potentials or neuronal field potentials. A variety of cells respond to dcEFs by migrating directionally, and this is termed galvanotaxis. The mechanism by which dcEFs direct cell movement, however, is not yet understood, and the effects on lung cancer cells are entirely unknown. We demonstrated that cultured human lung adenocarcinoma A549 cells migrate toward the cathode in applied dcEFs at 3 V/cm. Fluorescence microscopy showed that both epidermal growth factor receptors (EGFRs) and F-actin are polarized to the cathode. EGFR inhibitors, cetuximab and AG1478, reduced the migration rate and directed motility in dcEFs. Western blots showed that ERK and AKT signaling pathways were prominently promoted by dcEFs. EGFR inhibitors could reduce this promotion but not completely. These data suggest that polarization of EGFRs and the activation of their downstream signals play an important role in the galvanotaxis of A549 cells in dcEFs. Bioelectromagnetics 30:29,35, 2009. © 2008 Wiley-Liss, Inc. [source]


    Transfection and ligation of CD40 in human oral keratinocytes affect proliferation, adhesion and migration but not apoptosis in vitro

    CLINICAL & EXPERIMENTAL DERMATOLOGY, Issue 2 2006
    M. Villarroel Dorrego
    Summary Aims:, CD40 expression is restricted to Keratinocytes of normal epidermis or stratified squamous epithelium of oral mucosa. Ligation of CD40 inhibits keratinocyte proliferation and apoptosis. The aim of this study was to investigate the functional significance of CD40 in the proliferation, apoptosis, adhesion and migration of human oral keratinocytes in vitro. Methods., The CD40-negative oral keratinocyte line OSC19, its CD40-positive transfected derivative (OSC19T-CD40) and null transfectants (OSC19T-control), with and without stimulation by soluble protein CD40 ligand (sCD40L) or anti-CD40 antibodies were used. Results., OSC19T-CD40 showed significantly (P < 0.001) slower growth than the null transfectants and parent cells. OSC19T-CD40 proliferation was inhibited by ligation with sCD40L and blocking by two anti-CD40 antibodies, but stimulated by a third. Binding of CD40 with ligand or antibody had no effect on keratinocyte apoptosis in any cell line. The capacity of OSC19T-CD40 cells to adhere to CD40L-coated wells was significantly greater (P < 0.001) than that of parent OSC19 and OSC19T-control cells, and the migration rate of OSC19T-CD40 cells was significantly higher than parent OSC19 (P = 0.038 on fibronectin, P = 0.004 on Matrigel) or OSC19T-control (P =0.017 on fibronectin, P = 0.013 on Matrigel) cells. Conclusions., CD40 is an important molecule in keratinocyte homeostasis, and has more than one ligand. The ligand that is bound may be critical in oral epithelial homeostasis, the development of malignancy and the behaviour of the subsequent tumour. [source]


    Prescribing Flood Regimes to Sustain Riparian Ecosystems along Meandering Rivers

    CONSERVATION BIOLOGY, Issue 5 2000
    Brian D. Richter
    By managing river flows for water supplies and power generation, water management agencies have inadvertently caused considerable degradation of riverine ecosystems and associated biodiversity. New approaches for meeting human needs for water while conserving the ecological integrity of riverine ecosystems are greatly needed. We describe an approach for identifying the natural flooding characteristics that must be protected or restored to maintain riparian ( floodplain) ecosystems along meandering rivers. We developed a computer model to simulate flood-driven changes in the relative abundance of riparian patch types along the Yampa River in Colorado ( U.S.A.). The model is based on research suggesting that the duration of flooding at or above 209 m3 per second (125% of bankfull discharge) is particularly important in driving lateral channel migration, which is responsible for initiating ecological succession in the Yampa's riparian forest. Other hydrologic variables, such as the magnitude of annual peak flows, were not as strongly correlated with lateral channel migration rates. Model simulations enabled us to tentatively identify a threshold of alteration of flood duration that could lead to substantial changes in the abundance of forest patch types over time should river flows be regulated by future water projects. Based on this analysis, we suggest an ecologically compatible water management approach that avoids crossing flood alteration thresholds and provides opportunity to use a portion of flood waters for human purposes. Recommended improvements to the Yampa model include obtaining additional low-elevation aerial photographs of the river corridor to enable better estimation of channel migration rates and vegetation changes. These additional data should greatly improve the model's accuracy and predictive capabilities and therefore its management value. Resumen: La composición y estructura de ecosistemas ribereños están fuertemente ligadas a la variabilidad hidrológica natural. Al manejar el flujo de ríos para abastecer agua y generar energía, las agencias de manejo de agua han causado inadvertidamente una degradación considerable de los ecosistemas ribereños y la biodiversidad asociada a ellos. Se necesitan nuevas estrategias para satisfacer las necesidades humanas de agua al mismo tiempo que se conserva la integridad de los ecosistemas ribereños. Describimos una estrategia para identificar las características de inundaciones naturales que deben ser protegidas o restauradas para mantener ecosistemas riparios ( planicies de inundación) a lo largo de ríos sinuosos. Desarrollamos un modelo de computadora para simular los cambios causados por inundaciones en la abundancia relativa de tipos de parche ripario a lo largo del río Yampa, en Colorado ( Estados Unidos de Norteamérica). Este modelo se basa en investigación que sugiere que la duración de la inundación a, o mayor a, 209 m3 por segundo (125% de descarga del banco lleno a su capacidad) es particularmente importante en la conducción de la migración de canales laterales, lo cual es responsable de la iniciación de la sucesión ecológica en el bosque ripario del río Yampa. Otras variables hidrológicas, como lo es la magnitud del pico de los flujos anuales no estuvieron tan fuertemente correlacionadas con las tasas de migración lateral de canales. Las simulaciones del modelo nos permitieron identificar límites tentativos de alteración de la duración de la inundación que podrían conducir a cambios sustanciales en la abundancia de tipos de parches forestales en el tiempo si los flujos de los ríos son regulados en proyectos de agua futuros. En base a este análisis, sugerimos una estrategia de manejo de agua ecológicamente compatible que evita sobrepasar los límites de alteración de las inundaciones y provee la oportunidad de usar una porción del agua de las inundaciones para fines humanos. Las recomendaciones de mejoras al modelo del río Yampa incluyen la necesidad de obtener fotografías aéreas de baja elevación adicionales del corredor del río, que permitan una mejor estimación de las tasas de migración de los canales y los cambios en la vegetación. Estos datos adicionales deberán mejorar en gran medida la precisión del modelo y sus capacidades predictivas y, por lo tanto, su valor de manejo. [source]


    Secular trends, disease maps and ecological analyses of the incidence of childhood onset Type 1 diabetes in Northern Ireland, 1989,2003

    DIABETIC MEDICINE, Issue 3 2007
    C. R. Cardwell
    Abstract Aims To investigate secular trends in the incidence of Type 1 diabetes in Northern Ireland over the period 1989,2003. To highlight geographical variations in the incidence of Type 1 diabetes by producing disease maps and to compare incidence rates by relevant area characteristics. Methods New cases of Type 1 diabetes in children aged 0,14 years in Northern Ireland were prospectively registered from 1989 to 2003. Standardized incidence rates were calculated and secular trends investigated. Bayesian methodology was used to produce maps of disease incidence using small geographical areas (582 electoral wards). Ecological analyses were conducted using Poisson regression to investigate incidence rates by area characteristics at a finer geographical subdivision (5022 census output areas). Results In Northern Ireland during 1989,2003, there were 1433 new cases, giving a directly standardized incidence rate of 24.7 per 100 000 person-years. This incidence rate increased by a mean of 4.2% per annum. Disease maps highlighted higher incidence rates in the predominately rural north-east of the province and lower incidence rates in the urban areas around Belfast in the east and Derry in the north-west of the province. Ecological analysis identified higher incidence in rural areas (P < 0.001), areas with low migration rates (P = 0.002), affluent areas (P < 0.0001), sparsely populated areas (P = 0.0001) and remote areas (P = 0.005). Conclusions In Northern Ireland the incidence of Type 1 diabetes is increasing. The observed higher incidence in rural, affluent, sparsely populated and remote areas may reflect a reduced or delayed exposure to infections in these areas. [source]


    Characteristics and dynamics of multiple intertidal bars, north Lincolnshire, England

    EARTH SURFACE PROCESSES AND LANDFORMS, Issue 4 2006
    Selma van Houwelingen
    Abstract Multiple intertidal bars and troughs, often referred to as ,ridges and runnels', are significant features on many macrotidal sandy beaches. Along the coastline of England and Wales, they are particularly prevalent in the vicinity of estuaries, where the nearshore gradient is gentle and a large surplus of sediment is generally present. This paper examines the dynamics of such bar systems along the north Lincolnshire coast. A digital elevation model of the intertidal morphology obtained using LIDAR demonstrates that three to five intertidal bars are consistently present with a spacing of approximately 100 m. The largest and most pronounced bars (height = 0·5,0·8 m) are found around mean sea level, whereas the least developed bars (height = 0·2,0·5 m) occur in the lower intertidal zone. Annual aerial photographs of the intertidal bar morphology were inspected to try to track individual bars from year to year to derive bar migration rates; however, there is little resemblance between concurrent photographs, and ,resetting' of the intertidal profile occurs on an annual basis. Three-dimensional beach surveys were conducted monthly at three locations along the north Lincolnshire coast over a one-year period. The intertidal bar morphology responds strongly to the seasonal variation in the forcing conditions, and bars are least numerous and flattest during the more energetic winter months. Morphological changes over the monthly time scale are strongly affected by longshore sediment transport processes and the intertidal bar morphology can migrate along the beach at rates of up to 30 m per month. The behaviour of intertidal bars is complex and varies over a range of spatial and temporal scales in response to a combination of forcing factors (e.g. incident wave energy, different types of wave processes, longshore and cross-shore sediment transport), relaxation time and morphodynamic feedback. Copyright © 2005 John Wiley & Sons, Ltd. [source]