Midpoint Potential (midpoint + potential)

Distribution by Scientific Domains


Selected Abstracts


Immobilization and Electrochemistry of Negatively Charged Proteins on Modified Nanocrystalline Metal Oxide Electrodes

ELECTROANALYSIS, Issue 12 2005
Emmanuel Topoglidis
Abstract The immobilization of two acidic, low isoelectric point proteins, green fluorescence protein and ferredoxin (FRD) is investigated on nanocrystalline, mesoporous TiO2 and SnO2 electrodes. Modification of these electrodes with a cationic polypeptide (poly- L -lysine) or an aminosilane prior to protein immobilization is found to enhance protein binding at least ten fold, attributed to more favorable protein/electrode electrostatic interactions. Cyclic voltammetry studies of FRD-modified SnO2 electrodes indicate reversible protein electrochemistry with a midpoint potential of ,0.59,V (vs. Ag/AgCl) and an interfacial electron transfer rate constant of 0.45,s,1. [source]


Assignment of the [4Fe-4S] clusters of Ech hydrogenase from Methanosarcina barkeri to individual subunits via the characterization of site-directed mutants

FEBS JOURNAL, Issue 18 2005
Lucia Forzi
Ech hydrogenase from Methanosarcina barkeri is a member of a distinct group of membrane-bound [NiFe] hydrogenases with sequence similarity to energy-conserving NADH:quinone oxidoreductase (complex I). The sequence of the enzyme predicts the binding of three [4Fe-4S] clusters, one by subunit EchC and two by subunit EchF. Previous studies had shown that two of these clusters could be fully reduced under 105 Pa of H2 at pH 7 giving rise to two distinct S½ electron paramagnetic resonance (EPR) signals, designated as the g = 1.89 and the g = 1.92 signal. Redox titrations at different pH values demonstrated that these two clusters had a pH-dependent midpoint potential indicating a function in ion pumping. To assign these signals to the subunits of the enzyme a set of M. barkeri mutants was generated in which seven of eight conserved cysteine residues in EchF were individually replaced by serine. EPR spectra recorded from the isolated mutant enzymes revealed a strong reduction or complete loss of the g = 1.92 signal whereas the g = 1.89 signal was still detectable as the major EPR signal in five mutant enzymes. It is concluded that the cluster giving rise to the g = 1.89 signal is the proximal cluster located in EchC and that the g = 1.92 signal results from one of the clusters of subunit EchF. The pH-dependence of these two [4Fe-4S] clusters suggests that they simultaneously mediate electron and proton transfer and thus could be an essential part of the proton-translocating machinery. [source]


Factor analysis of spectroelectrochemical reduction of FAD reveals the pKa of the reduced state and the reduction pathway

JOURNAL OF CHEMOMETRICS, Issue 12 2007
Edmund R. Malinowski
Abstract The free flavin adenine dinucleotide (FAD) cofactor is known to exhibit a pH-dependent midpoint potential involving a simultaneous two-electron transfer step (n,=,2). Uv-vis spectroelectrochemical reductions of FAD at constant pH, ranging from 5 to 9, were recorded and analyzed by factor analysis. Principal factor analysis was used to determine the number of species present at each pH. The results indicate that only two composite forms of FAD are present: the oxidized and the reduced forms. Window factor analysis was used to extract the concentration profiles of the controlling species. The oxidized form was found to be a single pH-independent species, whereas the reduced form consists of two species. The pH-dependent spectroscopic changes of reduced FAD were best modeled by a single proton transfer step involving two different ionization states with an apparent pKa,=,6.3. This value compares favorably with those obtained from NMR and from midpoint potential measurements. At pH 6, the reduction of FAD was found to be first order, whereas at pH 9 the reduction is zero order; these observations are explained in terms of the reaction pathway involving xanthine oxidase, its substrate, and the pH. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Topological and Electron-Transfer Properties of Yeast Cytochrome c Adsorbed on Bare Gold Electrodes

CHEMPHYSCHEM, Issue 11 2003
Beatrice Bonanni Dr.
Abstract The redox metalloprotein yeast cytochrome c was directly self-chemisorbed on "bare" gold electrodes through the free sulfur-containing group Cys102. Topological, spectroscopic, and electron transfer properties of the immobilised molecules were investigated by in situ scanning probe microscopy and cyclic voltammetry. Atomic force and scanning tunnelling microscopy revealed individual protein molecules adsorbed on the gold substrate, with no evidence of aggregates. The adsorbed proteins appear to be firmly bound to gold and display dimensions in good agreement with crystallographic data. Cyclic voltammetric analysis showed that up to 84,% of the electrode surface is functionalised with electroactive proteins whose measured redox midpoint potential is in good agreement with the formal potential. Our results clearly indicate that this variant of cytochrome c is adsorbed on bare gold electrodes with preservation of morphological properties and redox functionality. [source]


The Fe-only nitrogenase and the Mo nitrogenase from Rhodobacter capsulatus

FEBS JOURNAL, Issue 6 2002
A comparative study on the redox properties of the metal clusters present in the dinitrogenase components
The dinitrogenase component proteins of the conventional Mo nitrogenase (MoFe protein) and of the alternative Fe-only nitrogenase (FeFe protein) were both isolated and purified from Rhodobacter capsulatus, redox-titrated according to the same procedures and subjected to an EPR spectroscopic comparison. In the course of an oxidative titration of the MoFe protein (Rc1Mo) three significant S = 1/2 EPR signals deriving from oxidized states of the P-cluster were detected: (1) a rhombic signal (g = 2.07, 1.96 and 1.83), which showed a bell-shaped redox curve with midpoint potentials (Em) of ,195 mV (appearance) and ,30 mV (disappearance), (2) an axial signal (g|| = 2.00, g, = 1.90) with almost identical redox properties and (3) a second rhombic signal (g = 2.03, 2.00, 1.90) at higher redox potentials (> 100 mV). While the ,low-potential' rhombic signal and the axial signal have been both attributed to the one-electron-oxidized P-cluster (P1+) present in two conformationally different proteins, the ,high-potential' rhombic signal has been suggested rather to derive from the P3+ state. Upon oxidation, the FeFe protein (Rc1Fe) exibited three significant S = 1/2 EPR signals as well. However, the Rc1Fe signals strongly deviated from the MoFe protein signals, suggesting that they cannot simply be assigned to different P-cluster states. (a) The most prominent feature is an unusually broad signal at g = 2.27 and 2.06, which proved to be fully reversible and to correlate with catalytic activity. The cluster giving rise to this signal appears to be involved in the transfer of two electrons. The midpoint potentials determined were: ,80 mV (appearance) and 70 mV (disappearance). (b) Under weakly acidic conditions (pH 6.4) a slightly altered EPR signal occurred. It was characterized by a shift of the g values to 2.22 and 2.05 and by the appearance of an additional negative absorption-shaped peak at g = 1.86. (c) A very narrow rhombic EPR signal at g = 2.00, 1.98 and 1.96 appeared at positive redox potentials (Em = 80 mV, intensity maximum at 160 mV). Another novel S = 1/2 signal at g = 1.96, 1.92 and 1.77 was observed on further, enzymatic reduction of the dithionite-reduced state of Rc1Fe with the dinitrogenase reductase component (Rc2Fe) of the same enzyme system (turnover conditions in the presence of N2 and ATP). When the Rc1Mo protein was treated analogously, neither this ,turnover signal' nor any other S = 1/2 signal were detectable. All Rc1Fe -specific EPR signals detected are discussed and tentatively assigned with special consideration of the reference spectra obtained from Rc1Mo preparations. [source]