Midge Larvae (midge + larva)

Distribution by Scientific Domains


Selected Abstracts


Evaluated fate and effects of atrazine and lambda-cyhalothrin in vegetated and unvegetated microcosms,,

ENVIRONMENTAL TOXICOLOGY, Issue 5 2005
J. L. Bouldin
Abstract Contaminants such as nutrients, metals, and pesticides can interact with constructed wetlands and existing drainage ditches used as agricultural best-management practices. Our research has shown that the presence of macrophytes and a hydrologic regime aid in the transfer and transformation of pesticides associated with agricultural runoff. This study consisted of application of both atrazine (triazine herbicide) and lambda-cyhalothrin (pyrethroid insecticide) to vegetated and unvegetated microcosms in order to measure the fate and effects of pesticides applied at suggested field application rates. Exposures focused on monocultures of Ludwigia peploides (water primrose) and Juncus effusus (soft rush). Pesticide sorption was evident through concentrations of atrazine and lambda-cyhalothrin in plant tissue as high as 2461.4 and 86.50 ,g/kg, respectively. Toxicity was measured in water from unvegetated microcosms for 28 days and in Chironomus tentans (midge larvae) exposed to sediment collected from 3 h to 56 days in microcosms receiving the pesticide combination. The comparative survival of test organisms in this study suggests that effective mitigation of pesticides from runoff can depend on the macrophyte contact and vegetative attributes associated with ditches. © 2005 Wiley Periodicals, Inc. Environ Toxicol 20: 487,498, 2005. [source]


Accumulation of 137Cs by larvae of the midge Chironomus riparius from sediment: Effect of potassium

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 7 2003
Lieven Bervoets
Abstract We studied the effect of potassium on the uptake of radiocesium from sediment by larvae of the midge Chironomus riparius. Sediment ingestion rate was determined for one week. After 24 h the gut content remained constant, indicating that equilibrium was reached between sediment ingestion and sediment elimination. These data were used to account for radiocesium present in the gut in subsequent uptake experiments. Reference sediment was equilibrated with solutions containing different concentrations of potassium: 1, 10, 100, and 1,000 ,M. Adsorption of 137Cs to the sediment was investigated. Three different radiocesium levels (0.3, 0.6, and 1.2 KBq/ml) were applied at the four different potassium levels. In all cases more than 94% of all radiocesium was adsorbed to the sediment within 48 h. The sediment, equilibrated with the four different potassium levels, was spiked with a constant amount of 296 Bq/ml 137Cs. Accumulation by midge larvae was followed for one week, and subsequently elimination was followed for another week. No significant differences in radiocesium levels in midge larvae among the treatments were found after one week of exposure. However, using a one-compartment accumulation model, a small but significant effect of potassium in water and sediment on the uptake and elimination rate constants (ka and ke) was found. These results indicate that although differences were rather small, radiocesium accumulation decreased with increasing potassium level in the sediment. [source]


Biomimetic solid-phase microextraction to predict body residues and toxicity of chemicals that act by narcosis

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 2 2002
Heather A. Leslie
Abstract A biomimetic extraction technique using solid-phase microextraction (SPME) fibers has been developed for the risk assessment of contaminants with a narcotic mode of action. Our goal is to apply this technique in the future for the prediction of total baseline toxicity of environmental water and effluent samples. Validation of this method requires establishing the relationship between contaminant accumulation and toxicity in biota and accumulation in the surrogate solid phase (the SPME fiber coating). For this purpose, we determined the median lethal concentration (LC50) values for Chironomus riparius midge larvae exposed to two halogenated aromatic compounds separately and measured body residues in the exposed larvae. Solid-phase microextraction fibers with an 85-,m polyacrylate (PA) coating served as the surrogate hydrophobic phase, mimicking the uptake of the compounds by midge larvae. The toxicant concentrations in SPME fibers measured directly by gas chromatography/mass spectrometry (GCMS) or calculated from the SPME fiber,water partition coefficient, KSPME, were related to the toxicant concentrations found in midge larvae. Our results demonstrated that the biomimetic SPME method enables the estimation of body residues in biota and prediction of the degree of baseline toxicity of a water medium. [source]


Synergistic, antagonistic and additive effects of multiple stressors: predation threat, parasitism and pesticide exposure in Daphnia magna

JOURNAL OF APPLIED ECOLOGY, Issue 6 2008
Anja Coors
Summary 1Predation and parasitism are important factors in the ecology and evolution of natural populations and may, along with other environmental factors, interact with the impact of anthropogenic pollutants. 2Our study aimed at identifying potential interactions between three stressors (predation threat, parasitism and pesticide exposure) and at exploring the predictability of their joint effects by using the model of independent action. We assessed in a full-factorial design the impacts of these stressors on key life-history traits and population growth rate of the water flea Daphnia magna. 3When applied as single stressors, predation threat and parasite challenge induced varying stressor-specific adaptive responses. The pesticide carbaryl was applied at a generally sublethal concentration, which caused low mortality only in first-brood offspring. 4Pesticide exposure interacted synergistically with parasite challenge regarding survival, which suggests immunomodulatory activity of the pesticide. Predation threat by phantom midge larvae showed antagonistic interactions for amount of first-brood offspring with both parasite challenge and carbaryl exposure. All stressors additively affected age and size at maturity, which added up to a considerable delay in the onset of reproduction in the three-stressor combination. The intrinsic rate of natural increase, r, reflected the non-additive and additive effects on single endpoints and showed significant synergistic interactions for all two-stressor combinations. The combination of all stressors resulted in a dramatic reduction of r compared to the stressor-free control. 5The model of independent action proved useful in quantitatively predicting effects of additively acting stressors, and in visualizing the occurrence and magnitude of non-additive effects in accordance with results of analysis of variances. 6Synthesis and applications. Cumulative additive effects and non-additive interactions of natural antagonists and pollutants are shown to result in considerable impacts on ecologically relevant parameters. As a starting point for an environmentally more realistic risk assessment of chemicals, it may be a valuable strategy to screen for non-additive effects among many stress factors simultaneously in simplified experimental designs by using the model of independent action. [source]


Influence of UV Radiation on Four Freshwater Invertebrates,

PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 5 2000
Alina Cywinska
ABSTRACT Laboratory tests confirmed a negative and variable response of the following four species to artificial UV radiation: Cypridopsis vidua, an ostracode; Chironomus riparius, a midge larvae; Hyalella azteca, an amphipod; and Daphnia magna, a daphnid. Severe damage occurred at UV-B irradiance ranging from 50 to 80% of incident summer values. Under constant exposure to UV and photosynthetically active radiation (PAR) the acute lethal response was recorded at 0.3, 0.8, 0.8 and 4.9 W m,2 UV-B for D. magna, H. azteca, C. riparius and C. vidua, respectively. Sublethal UV-B damage to invertebrates included impaired movement, partial paralysis, changes in pigmentation and altered water balance (bloating). A series of UV-B, UV-A and PAR treatments, applied separately and in combination, revealed a positive role for both UV-A and PAR in slowing down UV-B damage. Mean lethal concentration values of the species typically more tolerant to UV and PAR (Cypridopsis, Chironomus) decreased conspicuously when both UV-A and PAR were eliminated. For UV-B,sensitive species (Hyalella, Daphnia) these differences were notably smaller. We suggest that this gradation of sensitivity among the tested species demonstrates potential differences in repairing mechanisms which seem to work more efficiently for ostracodes and chironomids than for amphipods and daphnids. Manipulations with a cellulose acetate filter showed that lower range UV-B (280,290 nm), produced by FS-40 lamps, may cause excessive UV damage to invertebrates. [source]


Inheritance of resistance to wheat midge, Sitodiplosis mosellana, in spring wheat

PLANT BREEDING, Issue 5 2002
R. I. H. McKenzie
Abstract Inheritance of resistance to a wheat midge, Sitodiplosis mosellana (Géhin), was investigated in spring wheats derived from nine resistant winter wheat cultivars. F1 hybrids were obtained from crosses between resistant winter wheats and susceptible spring wheats, and used to generate doubled haploid populations. These populations segregated in a ratio of 1:1 resistant to susceptible, indicating that a single gene confers the resistance. The F2 progeny from an intercross among spring wheats derived from the nine resistance sources did not segregate for resistance. Therefore, the same gene confers resistance in all nine sources of resistance, although other genes probably affect expression because the level of resistance varied among lines. Heterozygous plants from five crosses between diverse susceptible and resistant spring wheat parents all showed intermediate levels of response, indicating that resistance is partly dominant. Susceptible plants were reliably discriminated from heterozygous or homozygous resistant ones in laboratory tests, based on the survival and development of wheat midge larvae on one or two spikes. This powerful resistance gene, designated Sm1, is simply inherited and can be incorporated readily into breeding programmes for spring or winter wheat. However, the use of this gene by itself may lead to the evolution of a virulent population, once a resistant cultivar is widely grown. [source]


Effects of the Cardiff Bay tidal barrage on the abundance, ecology and behaviour of shelducks Tadorna tadorna

AQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, Issue 4 2009
Peter N. Ferns
Abstract 1.Closure of the Taff/Ely Estuary by the Cardiff Bay barrage in 1999 resulted in the replacement of intertidal mudflats by a permanent freshwater lake. This led to an 89% reduction in the population of shelducks Tadorna tadorna. 2.The birds switched from foraging mainly for Nereis diversicolor and Hydrobia ulvae by scything with the bill as they walked across the mudflats at low tide, to feeding on benthic chironomid midge larvae while swimming in shallow water around the margins of the lake. 3.The population decline occurred as a consequence of a decrease in the area available for foraging,,,from about 1,km2 of mudflats to about 0.1,km2 of water shallow enough for shelducks to reach the bottom when dabbling, head dipping and upending. 4.Contrary to expectation, the amount of time shelducks spent feeding was similar pre- and post-barrage, and their body and plumage condition improved. 5.A tidal rhythm in activity persisted, with a reduced amount of feeding at high tide, probably because of the slight rise in water levels that sometimes occurred at this time. Copyright © 2008 John Wiley & Sons, Ltd. [source]