Home About us Contact | |||
Middle Temporal (middle + temporal)
Terms modified by Middle Temporal Selected AbstractsImaging brain activity during natural vision using CASL perfusion fMRIHUMAN BRAIN MAPPING, Issue 7 2007Hengyi Rao Abstract Functional MRI (fMRI) has begun to be used to explore human brain activity during ecological and natural conditions. Arterial spin labeling (ASL) perfusion fMRI provides an appealing approach for imaging sustained brain activity during natural conditions because of its long-term temporal stability and ability to noninvasively quantify absolute cerebral blood flow (CBF). The present study used ASL perfusion fMRI to measure brain activation patterns associated with natural vision by concurrently recording CBF and blood oxygen level-dependent (BOLD) contrasts while subjects were freely viewing a cartoon movie. Reliable quantitative whole-brain CBF values (,60 mL/100g/min) as well as regional CBF values (45,80 mL/100g/min) were measured during movie viewing and resting states. The perfusion contrast revealed CBF increases in multiple visual pathway areas and frontal areas, and CBF decreases in ventromedial frontal cortex and superior temporal cortex during movie viewing compared to resting states. Concurrent BOLD contrast revealed similar but weaker activation and deactivation patterns. Regression analyses of both CBF data and BOLD data showed significant associations between activation in the middle temporal (MT) region and subjects' perception of motion. Region of interest analysis based on a priori literature-defined MT demonstrated significant monotonic stepwise associations between the intensity of motion perception and the CBF and BOLD signal changes. These results demonstrate the feasibility of using ASL perfusion fMRI for imaging both sustained and dynamic effects in neural activation during natural and ecologically valid situations, and support the notion of maintained functional segregation and specialization during natural vision. Hum Brain Mapp, 2006. © 2006 Wiley-Liss, Inc. [source] BOLD Response During Spatial Working Memory in Youth With Heavy Prenatal Alcohol ExposureALCOHOLISM, Issue 12 2009Andrea D. Spadoni Background:, Prenatal alcohol exposure has been consistently linked to neurocognitive deficits and structural brain abnormalities in affected individuals. Structural brain abnormalities observed in regions supporting spatial working memory (SWM) may contribute to observed deficits in visuospatial functioning in youth with fetal alcohol spectrum disorders (FASDs). Methods:, We used functional magnetic resonance imaging (fMRI) to assess the blood oxygen level dependent (BOLD) response in alcohol-exposed individuals during a SWM task. There were 22 young subjects (aged 10,18 years) with documented histories of heavy prenatal alcohol exposure (ALC, n = 10), and age- and sex-matched controls (CON, n = 12). Subjects performed a SWM task during fMRI that alternated between 2-back location matching (SWM) and simple attention (vigilance) conditions. Results:, Groups did not differ on task accuracy or reaction time to the SWM condition, although CON subjects had faster reaction times during the vigilance condition (617 millisecond vs. 684 millisecond, p = 0.03). Both groups showed similar overall patterns of activation to the SWM condition in expected regions encompassing bilateral dorsolateral prefrontal lobes and parietal areas. However, ALC subjects showed greater BOLD response to the demands of the SWM relative to the vigilance condition in frontal, insular, superior, and middle temporal, occipital, and subcortical regions. CON youth evidenced less increased brain activation to the SWM relative to the vigilance task in these areas (p < 0.05, clusters > 1,664 ,l). These differences remained significant after including Full Scale IQ as a covariate. Similar qualitative results were obtained after subjects taking stimulant medication were excluded from the analysis. Conclusions:, In the context of equivalent performance to a SWM task, the current results suggest that widespread increases in BOLD response in youth with FASDs could either indicate decreased efficiency of relevant brain networks, or serve as a compensatory mechanism for deficiency at neural and/or cognitive levels. In context of existing fMRI evidence of heightened prefrontal activation in response to verbal working memory and inhibition demands, the present findings may indicate that frontal structures are taxed to a greater degree during cognitive demands in individuals with FASDs. [source] Voxel-based morphometry depicts central compensation after vestibular neuritisANNALS OF NEUROLOGY, Issue 2 2010Peter zu Eulenburg MD Objective Patients who have had vestibular neuritis (VN) show a remarkable clinical improvement especially in gait and posture >6 months after disease onset. Methods Voxel-based morphometry was used to detect the VN-induced changes in gray and white matter by means of structural magnetic resonance imaging. Twenty-two patients were compared an average 2.5 years after onset of VN to a healthy sex-and age-matched control group. Results Our analysis revealed that all patients had signal intensity increases for gray matter in the medial vestibular nuclei and the right gracile nucleus and for white matter in the area of the pontine commissural vestibular fibers. A relative atrophy was observed in the left posterior hippocampus and the right superior temporal gyrus. Patients with a residual canal paresis also showed an increase of gray matter in middle temporal (MT)/V5 bilaterally. Interpretation These findings indicate that the processes of central compensation after VN seem to occur in 3 different sensory systems. First of all, the vestibular system itself showed a white matter increase in the commissural fibers as a direct consequence of an increased internuclei vestibular crosstalk of the medial vestibular nuclei. Second, to regain postural stability, there was a shift to the somatosensory system due to an elevated processing of proprioceptive information in the right gracile nucleus. Third, there was a bilateral increase in the area of MT/V5 in VN patients with a residual peripheral vestibular hypofunction. This seems to be the result of an increased importance of visual motion processing. ANN NEUROL 2010;68:241,249 [source] White matter abnormalities in bipolar disorder: a voxel-based diffusion tensor imaging studyBIPOLAR DISORDERS, Issue 4 2008Stefania Bruno Objectives:, In bipolar disorder (BD), dysregulation of mood may result from white matter abnormalities that disrupt fronto-subcortical circuits. In this study, we explore such abnormalities using diffusion tensor imaging (DTI), an imaging technique capable of detecting subtle changes not visible with conventional magnetic resonance imaging (MRI), and voxel-based analysis. Methods:, Thirty-six patients with BD, all but two receiving antidepressants or mood stabilizers, and 28 healthy controls matched for age and gender were studied. Diffusion-weighted echoplanar images (DW-EPI) were obtained using a 1.5T scanner. Voxel-based analysis was performed using SPM 2. Differences between the groups in mean diffusivity and fractional anisotropy (FA) were explored. Results:, In the patient group, mean diffusivity was increased in the right posterior frontal and bilateral prefrontal white matter, while FA was increased in the inferior, middle temporal and middle occipital regions. The areas of increased mean diffusivity overlapped with those previously found to be abnormal using volumetric MRI and magnetization transfer imaging (MTI) in the same group of patients. Conclusions:, White matter abnormalities, predominantly in the fronto-temporal regions, can be detected in patients with BD using DTI. The neuropathology of these abnormalities is uncertain, but neuronal and axonal loss, myelin abnormalities and alterations in axonal packing density are likely to be relevant. The neuroprotective effects of some antidepressants and mood stabilizers make it unlikely that medication effects could explain the abnormalities described here, although minor effects cannot be excluded. [source] |