Middle Miocene (middle + miocene)

Distribution by Scientific Domains
Distribution within Earth and Environmental Science


Selected Abstracts


Quantitative reconstruction of Late Cenozoic landscapes: a case study in the Sierra de Atapuerca (Burgos, Spain)

EARTH SURFACE PROCESSES AND LANDFORMS, Issue 2 2008
Alfonso Benito-Calvo
Abstract We have developed a method to reconstruct palaeorelief by means of detailed geomorphological and geological studies, geostatistical tools, GIS and a DEM. This method has been applied to the Sierra de Atapuerca (NE Duero Basin, Burgos, Spain), allowing us to model a three-dimensional reconstruction of the relief evolution from the Middle Miocene to the present. The modelling procedure is based on geostatistical recovery of the palaeosurfaces characteristic of each geomorphological evolution stage, using polynomial regressions, trend surfaces and kriging. The modelling of morphology trends has been useful in establishing new geological and geomorphological relationships in the geodynamic evolution of this basin, such as uplift quantification, correlation of erosion surfaces and sedimentary units, and the evolution of fluvial base levels. The palaeosurface reconstruction together with an analysis of the slope retreat have allowed us to reconstruct the palaeoreliefs that define the Late Cenozoic landscape evolution of this area, where the Lower and Middle Pleistocene archaeopalaeontological sites of the Sierra de Atapuerca are located. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Origin and geochemistry of Miocene marine evaporites associated with red beds: Great Kavir Basin, Central Iran

GEOLOGICAL JOURNAL, Issue 1 2007
Hossain Rahimpour-Bonab
Abstract During the Cenozoic numerous shallow epicontinental evaporite basins formed due to tectonic movements in the Northern Province of the Central Iran Tectonic Zone (the Great Kavir Basin). During the Miocene, due to sea-level fluctuations, thick sequences of evaporites and carbonates accumulated in these basins that subsequently were overlain by continental red beds. Development of halite evaporites with substantial thickness in this area implies inflow of seawater along the narrow continental rift axis. The early ocean basin development was initiated in Early Eocene time and continued up to the Middle Miocene in the isolated failed rift arms. Competition between marine and non-marine environments, at the edge of the encroaching sea, produced several sequences of both abrupt and gradual transition from continental wadi sediments to marginal marine evaporites in the studied area. These evaporites show well-preserved textures indicative of relatively shallow-brine pools. The high Br content of these evaporites indicates marine-derived parent brines that were under the sporadic influence of freshening by meteoric water or replenishing seawater. However, the association of hopper and cornet textures denotes stratified brine that filled a relatively large pool and prevented rapid variations in the Br profile. Unstable basin conditions that triggered modification of parent brine chemistry prevailed in this basin and caused variable distribution patterns for different elements in the chloride units. The presence of sylvite and the absence of Mg-sulphate/chlorides in the paragenetic sequence indicate SO4,depleted parent brine in the studied sequence. Petrographic examinations along with geochemical analyses on these potash-bearing halites reveal parental brines which were a mixture of seawater and CaCl2 -rich brines. The source of CaCl2 -rich brines is ascribed to the presence of local rift systems in the Great Kavir Basin up to the end of the Early Miocene. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Insights into biaxial extensional tectonics: an examplefrom the Sand,kl, Graben, West Anatolia, Turkey

GEOLOGICAL JOURNAL, Issue 1 2003
Mustafa Cihan
Abstract West Anatolia, together with the Aegean Sea and the easternmost part of Europe, is one of the best examples of continental extensional tectonics. It is a complex area bounded by the Aegean,Cyprus Arc to the south and the North Anatolian Fault Zone (NAFZ) to the north. Within this complex and enigmatic framework, the Sand,kl, Graben (10,km wide, 30,km long) has formed at the eastern continuation of the Western Anatolian extensional province at the north-northwestward edge of the Isparta Angle. Recent studies have suggested that the horst,graben structures in West Anatolia formed in two distinct extensional phases. According to this model the first phase of extension commenced in the Early,Middle Miocene and the last, which is accepted as the onset of neotectonic regime, in Early Pliocene. However, it is controversial whether two-phase extension was separated by a short period of erosion or compression during Late Miocene,Early Pliocene. Both field observations and kinematic analysis imply that the Sand,kl, Graben has existed since the Late Pliocene, with biaxial extension on its margins which does not necessarily indicate rotation of regional stress distribution in time. Although the graben formed later in the neotectonic period, the commencement of extension in the area could be Early Pliocene (c. 5,Ma) following a severe but short time of erosion at the end of Late Miocene. The onset of the extensional regime might be due to the initiation of westward motion of Anatolian Platelet along the NAFZ that could be triggered by the higher rate of subduction at the east Aegean,Cyprus Arc in the south of the Aegean Sea. Copyright © 2003 John Wiley & Sons, Ltd. [source]


Small mammal (rodents and lagomorphs) European biogeography from the Late Oligocene to the mid Pliocene

GLOBAL ECOLOGY, Issue 4 2007
Olivier Maridet
ABSTRACT Aim, To analyse the fossil species assemblages of rodents and lagomorphs from the European Neogene in order to assess what factors control small mammal biogeography at a deep-time evolutionary time-scale. Location, Western Europe: 626 fossil-bearing localities located within 31 regions and distributed among 18 successive biochronological units ranging from c. 27 Ma (million years ago; Late Oligocene) to c. 3 Ma (mid Pliocene). Methods, Taxonomically homogenized pooled regional assemblages are compared using the Raup and Crick index of faunal similarity; then, the inferred similarity matrices are visualized as neighbour-joining trees and by projecting the statistically significant interregional similarities and dissimilarities onto palaeogeographical maps. The inferred biogeographical patterns are analysed and discussed in the light of known palaeogeographical and palaeoclimatic events. Results, Successive time intervals with distinct biogeographical contexts are identified. Prior to c. 18 Ma (Late Oligocene and Early Miocene), a relative faunal homogeneity (high interregional connectivity) is observed all over Europe, a time when major geographical barriers and a weak climatic gradient are known. Then, from the beginning of the Middle Miocene onwards, the biogeography is marked by a significant decrease in interregional faunal affinities which matches a drastic global climatic degradation and leads, in the Late Miocene (c. 11 Ma), to a marked latitudinal pattern of small mammal distribution. In spite of a short rehomogenization around the Miocene/Pliocene boundary (6,4 Ma), the biogeography of small mammals in the mid Pliocene (c. 3 Ma) finally closely reflects the extant situation. Main conclusions, The resulting biogeographical evolutionary scheme indicates that the extant endemic situation has deep historical roots corresponding to global tectonic and climatic events acting as primary drivers of long-term changes. The correlation of biogeographical events with climatic changes emphasizes the prevalent role of the climate over geography in generating heterogeneous biogeographical patterns at the continental scale. [source]


Functional anatomy of the forelimb in Promegantereon* ogygia (Felidae, Machairodontinae, Smilodontini) from the Late Miocene of Spain and the origins of the sabre-toothed felid model

JOURNAL OF ANATOMY, Issue 3 2010
Manuel J. Salesa
Abstract We examine the functional anatomy of the forelimb in the primitive sabre-toothed cat Promegantereon ogygia in comparison with that of the extant pantherins, other felids and canids. The study reveals that this early machairodontine had already developed strong forelimbs and a short and robust thumb, a combination that probably allowed P. ogygia to exert relatively greater forces than extant pantherins. These features can be clearly related to the evolution of the sabre-toothed cat hunting method, in which the rapid killing of prey was achieved with a precise canine shear-bite to the throat. In this early sabre-toothed cat from the Late Miocene, the strong forelimbs and thumb were adapted to achieve the rapid immobilization of prey, thus decreasing the risk of injury and minimizing energy expenditure. We suggest that these were the major evolutionary pressures that led to the appearance of the sabre-toothed cat model from the primitive forms of the Middle Miocene, rather than the hunting of very large prey, although these adaptations reached their highest development in the more advanced sabre-toothed cats of the Plio-Pleistocene, such as Smilodon and Homotherium. Although having very different body proportions, these later animals developed such extremely powerful forelimbs that they were probably able to capture relatively larger prey than extant pantherins. [source]


Floristic turnover in Iceland from 15 to 6 Ma , extracting biogeographical signals from fossil floral assemblages

JOURNAL OF BIOGEOGRAPHY, Issue 9 2007
Friðgeir Grímsson
Abstract Aim, This study aims to document the floristic changes that occurred in Iceland between 15 and 6 Ma and to establish the dispersal mechanisms for the plant taxa encountered. Using changing patterns of dispersal, two factors controlling floristic changes are tested. Possible factors are (1) climate change, and (2) the changing biogeography of Iceland over the time interval studied; that is, the presence or absence of a Miocene North Atlantic Land Bridge. Location, The North Atlantic. Methods, Species lists of fossil plants from Iceland in the time period 15 to 6 Ma were compiled using published data and new data. Closest living analogues were used to establish dispersal properties for the fossil taxa. Dispersal mechanisms of fossil plants were then used to reconstruct how Iceland was colonized during various periods. Results, Miocene floras of Iceland (15,6 Ma) show relatively high floristic turnover from the oldest floras towards the youngest; and few taxa from the oldest floras persist in the younger floras. The frequencies of the various dispersal mechanisms seen in the 15-Ma floras are quite different from those recorded in the 6-Ma floras, and there is a gradual change in the prevailing mode of dispersal from short-distance anemochory and dyschory to long-distance anemochory. Two mechanisms can be used to explain changing floral composition: (1) climate change, and (2) the interaction between the dispersal mechanisms of plants and the increasing isolation of proto-Iceland during the Miocene. Main conclusions, Dispersal mechanisms can be used to extract palaeogeographic signals from fossil floras. The composition of floras and dispersal mechanisms indicate that Iceland was connected both to Greenland and to Europe in the early Middle Miocene, allowing transcontinental migration. The change in prevalence of dispersal modes from 15 to 6 Ma appears to reflect the break-up of a land bridge and the increasing isolation of Iceland after 12 Ma. Concurrent gradual cooling and isolation caused changes in species composition. Specifically, the widening of the North Atlantic Ocean prevented taxa with limited dispersal capability from colonizing Iceland, while climate cooling led to the extinction of thermophilous taxa. [source]


MIDDLE MIOCENE DASHAVA FORMATION SANDSTONES, CARPATHIAN FOREDEEP, UKRAINE

JOURNAL OF PETROLEUM GEOLOGY, Issue 4 2004
I. Kurovets
Middle Miocene (Sarmatian) sandstones in the Ukrainian Carpathian Foredeep are important exploration targets for natural gas. In this paper, we report on petrophysical studies on core samples of these sandstones with which we integrate wireline log data from 42 boreholes. Sarmation siltstones and sandstones in the study area are assigned to the lower part of the Dashava Formation. Seventeen units (LD 17 to LD 1:0.05 to 5m thick) are recognized in this formation on the basis of lithostratigraphy and log response. Sandstone content is highest within three lithostratigraphic complexes corresponding to units LD17-LD14, LD9-LD8 and LD5-LD3. During the Sarmatian, the Carpathian Foredeep was characterized by two depositional systems: a basinal turbidite system, and a second, more mixed system. Important controls on sedimentation included basin configuration and water depth, the occurrence of turbidity and other currents, and the location of provenance areas. Clastic material was delivered to the basin by rivers and ephemeral streams mostly from the Carpathian foldbelt. The content of sandy material within the Sarmatian succession increases from NW to SE, and from the central portion of the Krukenychy depression to the margins of the basin. [source]


A new species of Pliopithecus Gervais, 1849 (Primates: Pliopithecidae) from the Middle Miocene (MN8) of Abocador de Can Mata (els Hostalets de Pierola, Catalonia, Spain)

AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, Issue 1 2010
David M. Alba
Abstract Pliopithecus (Pliopithecus) canmatensis sp. nov. is described from several Late Aragonian localities from Abocador de Can Mata (ACM) in els Hostalets de Pierola (Vallès-Penedès Basin, Catalonia, Spain), spanning from ,11.7 to 11.6 Ma (C5r.3r subchron), and being correlated to the MN8 (reference locality La Grive L3). The ACM remains display a pliopithecine dental morphology with well-developed pliopithecine triangles on M/2 and M/3. This, together with other occlusal details, negates an attribution to the subgenus Epipliopithecus. Although slightly smaller, the ACM remains are most similar in size to comparable elements of P. piveteaui and P. antiquus. Several occlusal details (such as the greater development of the buccal cingulid in lower molars) and dental proportions (M/3 much longer than M/2), however, indicate greater similarities with P. antiquus from Sansan and La Grive. The ACM remains, however, differ from P. antiquus in dental proportions as well as occlusal morphology of the lower molars (including the less peripheral position of the protoconid and more medial position of the hypoconulid, the more mesial position of the buccal cuspids as compared to the lingual ones, the narrower but distinct mesial fovea, the higher trigonid, and the more extensive buccal cingulid, among others). These differences justify a taxonomic distinction at the species level of the ACM pliopithecid remains with respect to P. antiquus. Previous pliopithecid findings from the Vallès-Penedès Basin, previously attributed to P. antiquus, are neither attributable to the latter species nor to the newly erected one. Am J Phys Anthropol, 2010. © 2009 Wiley-Liss, Inc. [source]


Earliest Miocene hominoid from Southeast Asia

AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, Issue 2 2004
Yutaka Kunimatsu
Abstract A new hominoid fossil site, Chiang Muan in northern Thailand, yielded the first finding of a large-bodied Miocene hominoid in Southeast Asia. This specimen (CMu6-1,00) was preliminarily reported by Kunimatsu et al. ([2000a] Primate Res. 16:299). Later, Chaimanee et al. ([ 2003] Nature 422:61,65) reported additional hominoid teeth from the same site, but all of them were collected from younger deposits (the Upper Lignite Member, in Nagaoka and Suganuma [ 2002] Primate Res 18:159,164). The specimen described here (CMu6-1,00) was recovered from the Lower Lignite Member (Nagaoka and Suganuma [ 2002] Primate Res 18:159,164), which is probably several hundred thousand years older than the Upper Lignite Member (Suganuma et al. [ 2002] Primate Res. 18:165,173). This article provides a detailed description of this hominoid specimen and paleontological/geological data of the fossil site at Chiang Muan. The hominoid specimen (CMu6-1,00) is an isolated upper molar (right M1 or M2), similar in size to modern orangutans (Pongo pygmaeus). This upper molar has low and voluminous cusps, relatively thick enamel, and relatively low relief of the dentine/enamel junction, with only a faint remnant of the lingual cingulum. The age of Chiang Muan is estimated to be the latest Middle Miocene (ca. 11,12 Ma), based on the mammalian fossils (Nakaya et al. [ 2002] Primate Res. 18:131,141) and paleomagnetic study (Suganuma et al. [ 2002] Primate Res. 18:165,173). This suggests that the Chiang Muan Hominoid in the present study is an earlier member of Eastern Eurasian Miocene hominoids. Am J Phys Anthropol, 2003. © 2003 Wiley-Liss, Inc. [source]


The radiation of the Cape flora, southern Africa

BIOLOGICAL REVIEWS, Issue 4 2003
H. P. LINDER
ABSTRACT The flora of the south-western tip of southern Africa, the Cape flora, with some 9000 species in an area of 90 000 km2 is much more speciose than can be expected from its area or latitude, and is comparable to that expected from the most diverse equatorial areas. The endemism of almost 70%, on the other hand, is comparable to that found on islands. This high endemism is accounted for by the ecological and geographical isolation of the Cape Floristic Region, but explanations for the high species richness are not so easily found. The high species richness is accentuated when its taxonomic distribution is investigated: almost half of the total species richness of the area is accounted for by 33,Cape floral clades'. These are clades which may have initially diversified in the region, and of which at least half the species are still found in the Cape Floristic Region. Such a high contribution by a very small number of clades is typical of island floras, not of mainland floras. The start of the radiation of these clades has been dated by molecular clock techniques to between 18 million years ago (Mya)(Pelargonium) and 8 Mya (Phylica), but only six radiations have been dated to date. The fossil evidence for the dating of the radiation is shown to be largely speculative. The Cenozoic environmental history of southern Africa is reviewed in search of possible triggers for the radiations, climatic changes emerge as the most likely candidate. Due to a very poor fossil record, the climatic history has to be inferred from larger scale patterns, these suggest large-scale fluctuations between summer wet (Palaeocene, Early Miocene)and summer dry climates (Oligocene, Middle Miocene to present). The massive speciation in the Cape flora might be accounted for by the diverse limitations to gene flow (dissected landscapes, pollinator specialisation, long flowering times allowing much phenological specialisation), as well as a richly complex environment providing a diversity of selective forces (geographically variable climate, much altitude variation, different soil types, rocky terrain providing many micro-niches, and regular fires providing both intermediate disturbances, as well as different ways of surviving the fires). However, much of this is based on correlation, and there is a great need for (a)experimental testing of the proposed speciation mechanisms, (b)more molecular clock estimates of the age and pattern of the radiations, and (c)more fossil evidence bearing on the past climates. [source]


Evolution of an accretionary complex along the north arm of the Island of Sulawesi, Indonesia

ISLAND ARC, Issue 1 2004
Yusuf Surachman Djajadihardja
Abstract Seismic reflections across the accretionary prism of the North Sulawesi provide excellent images of the various structural domains landward of the frontal thrust. The structural domain in the accretionary prism area of the North Sulawesi Trench can be divided into four zones: (i) trench area; (ii) Zone A; (iii) Zone B; and (iv) Zone C. Zone A is an active imbrication zone where a decollement is well imaged. Zone B is dominated by out-of-sequence thrusts and small slope basins. Zone C is structurally high in the forearc basin, overlain by a thick sedimentary sequence. The subducted and accreted sedimentary packages are separated by the decollement. Topography of the oceanic basement is rough, both in the basin and beneath the wedge. The accretionary prism along the North Sulawesi Trench grew because of the collision between eastern Sulawesi and the Bangai,Sula microcontinent along the Sorong Fault in the middle Miocene. This collision produced a large rotation of the north arm of Sulawesi Island. Rotation and northward movement of the north arm of Sulawesi may have resulted in southward subduction and development of the accretionary wedge along North Sulawesi. Lateral variations are wider in the western areas relative to the eastern areas. This is due to greater convergence rates in the western area: 5 km/My for the west and 1.5 km/My for the east. An accretionary prism model indicates that the initiation of growth of the accretionary prism in the North Sulawesi Trench occurred approximately 5 Ma. A comparison between the North Sulawesi accretionary prism and the Nankai accretionary prism of Japan reveals similar internal structures, suggesting similar mechanical processes and structural evolution. [source]


Long-term changes in distribution and chemistry of middle Miocene to Quaternary volcanism in the Chokai-Kurikoma area across the Northeast Japan Arc

ISLAND ARC, Issue 1 2004
Hirofumi Kondo
Abstract To understand the characteristics of long-term spatial and temporal variation in volcanism within a volcanic arc undergoing constant subduction since the cessation of back-arc opening, a detailed investigation of middle Miocene to Quaternary volcanism was carried out within the Chokai-Kurikoma area of the Northeast Japan Arc. This study involved a survey of available literature, with new K,Ar and fission track dating, and chemical analyses. Since 14 Ma, volcanism has occurred within the Chokai-Kurikoma area in specific areas with a ,branch-like' pattern, showing an east,west trend. This is in marked contrast to the widespread distribution of volcanism with a north,south trend in the 20,14 Ma period. The east,west- trending ,branches' are characterized by regular intervals (50,100 km) of magmatism along the arc. These branches since 14 Ma are remarkably discrepant to the general northwest,southeast or north-northeast,south-southwest direction of the crustal structures that have controlled Neogene to Quaternary tectonic movements in northeast Japan. In addition, evidence indicating clustering and focusing of volcanism into smaller regions since 14 Ma was verified. Comparison of the distribution and chemistry of volcanic rocks for three principal volcanic stages (11,8, 6,3 and 2,0 Ma) revealed that widely but sparsely distributed volcanic rocks had almost the same level of alkali and incompatible element concentrations throughout the area (with the exception of Zr) in the 11,8 Ma stage. However, through the 6,3 Ma stage to the 2,0 Ma stage, the concentration level in the back-arc cluster increased, while that in the volcanic front cluster remained almost constant. Therefore, the degree of partial melting has decreased, most likely with a simultaneous increase in the depth of magma segregation within the back-arc zone, whereas within the volcanic front zone, the conditions of magma generation have changed little over the three stages. In conclusion, the evolution of the thermal structure within the mantle wedge across the arc since 14 Ma has reduced the extent of ascending mantle diapirs into smaller fields. This has resulted in the tendency for the distribution of volcanism to become localized and concentrated into more specific areas in the form of clusters from the late Miocene to Quaternary. [source]


K-Ar Ages of Tin-Polymetallic Mineralization in the Oruro Mining District, Central Bolivian Tin Belt

RESOURCE GEOLOGY, Issue 4 2003
Asahiko Sugaki
Abstract. K-Ar age determinations were carried out on vein- and rock-forming minerals from five vein-type tin-polymetallic ore deposits of the Oruro mining district in the central part of the Bolivian tin belt. The sericite from vein selvedges and an altered host rock provides good estimates of the ages of hypogene mineralization, and supergene alunite and jarosite provide ages for erosional and weathering episodes. It is concluded that hypogene mineralization in the Oruro mining district took place during the early to middle Miocene: 15.8±0.8 Ma at San José, 20.1±l.l Ma at Morococala, 20.5±1.0 Ma at Avicaya, and 19.6±1.0 Ma at Llallagua. Fine grained supergene alunite (,34S = -10.1 960) and jarosite yield K-Ar ages of 6.7±0.7 Ma at Avicaya and 3.9±0.7 Ma at Bolivar, respectively, suggesting that erosion and chemical weathering were active at those times. [source]


Tectonic and climatic control on growth and demise of the Phanh Rang Carbonate Platform offshore south Vietnam

BASIN RESEARCH, Issue 2 2009
Michael B. W. Fyhn
The Phan Rang Carbonate Platform located offshore south Vietnam covers more than 15 000 km2, making it one of the largest carbonate platforms in the South China Sea. Based on 2-D seismic analysis, this paper outlines the platform evolution and analyzes the regional tectonic, climatic and oceanic factors that controlled the platform growth and demise. This study of the Phan Rang Carbonate Platform therefore provides an analogue to the regions late Neogene carbonates that form important targets for petroleum exploration. Platform growth initiated during the late middle Miocene along the open marine Vietnamese margin and continued throughout the late synrift to early postrift period of the area terminating around Pliocene time. During this period, the structural grain, local and regional tectonics as well as oceanographic effects exerted major controls on carbonate deposition. Optimal growth conditions existed during initial platform deposition and locally accumulation rates reached ca. 230 m Ma,1. Late Miocene regional uplift caused subaerial exposure that interrupted platform growth and caused intense karstification. A gradual reestablishment of marine conditions promoted renewed platform growth. However, carbonate production was stressed by increased terrigenous input caused by onshore uplift and by inorganic nutrification of the surface waters. Nutrification probably occurred in response to increased nutrient influx derived from onshore denudation, enhanced periodically by soil ravinement during transgression. The onset or intensification of summer upwelling along the southern platform margin occurred in response to the onshore uplift and most likely contributed to the nutrification. The deteriorated growth conditions and fast subsidence resulted in platform split-up, backstepping and local drowning. Subsequently, isolated platforms nucleated on structural highs as transgression continued. The remaining platforms thrived for a period but eventually failed to keep pace with subsidence, backstepped and drowned. The longest surviving platform now crops out at the seafloor at ca. 500 m depth. [source]


Carbonate seismic stratigraphy of the Gulf of Papua mixed depositional system: Neogene stratigraphic signature and eustatic control

BASIN RESEARCH, Issue 2 2008
Evgueni N. Tcherepanov
ABSTRACT The Eocene,Miocene carbonate deposition in the Gulf of Papua (GoP) corresponds to the carbonate evolution phase of this continental margin mixed depositional system. Global sea-level (eustatic) fluctuations appear to have been the most important factor influencing the mixed depositional system development during its carbonate phase. Development of the major carbonate system in the Gulf was initiated during the Eocene. Subsequent to an early Oligocene hiatus, the carbonate system expanded its surface area, vertically aggraded, then systematically backstepped, and finally partially drowned during the late Oligocene,early part of the early Miocene. During the late early Miocene,early middle Miocene, the carbonate system continued its vertical growth in most platform areas, where it was able to keep up with sea-level rise. At the early middle/late middle Miocene (Langhian/Serravallian) boundary, carbonate deposition shifted downward during a long-term sea-level regression, exposing most of the early middle Miocene platform tops. Following this downward shift, active carbonate production became restricted during the late middle Miocene to only the northeastern part of the study area, and carbonate accumulation was characterized by four systematically prograding units. At the very beginning of the late Miocene, the platform tops were re-flooded. The carbonate system was partially drowned, systematically backstepped, and locally aggraded during part of the late Miocene, the early Pliocene, and the Quaternary. The overall organization of the carbonate sequence geometries, observed in the GoP, display a clear pattern, often referred to as the Oligocene,Neogene stratigraphic signature. This pattern is identical to contemporaneous sedimentary patterns observed in pure carbonate systems such as in the Maldives and in the Bahamas, and also in some siliciclastic systems. Because this pattern is observed in several globally distributed locations, the recognition of the Oligocene,Neogene stratigraphic signature in the GoP demonstrates that the depositional evolution during the late Oligocene,Miocene and the early Pliocene must have been dominantly controlled by eustatic fluctuations. [source]


The Miocene Saint-Florent Basin in northern Corsica: stratigraphy, sedimentology, and tectonic implications

BASIN RESEARCH, Issue 4 2007
William Cavazza
ABSTRACT Late early,early middle Miocene (Burdigalian,Langhian) time on the island of Corsica (western Mediterranean) was characterized by a combination of (i) postcollisional structural inversion of the main boundary thrust system between the Alpine orogenic wedge and the foreland, (ii) eustatic sealevel rise and (iii) subsidence related to the development of the Ligurian-Provençal basin. These processes created the accommodation for a distinctive continental to shallow-marine sedimentary succession along narrow and elongated basins. Much of these deposits have been eroded and presently only a few scattered outcrop areas remain, most notably at Saint-Florent and Francardo. The Burdigalian,Langhian sedimentary succession at Saint-Florent is composed of three distinguishing detrital components: (i) siliciclastic detritus derived from erosion of the nearby Alpine orogenic wedge, (ii) carbonate intrabasinal detritus (bioclasts of shallow-marine and pelagic organisms), and (iii) siliciclastic detritus derived from Hercynian-age foreland terraines. The basal deposits (Fium Albino Formation) are fluvial and composed of Alpine-derived detritus, with subordinate foreland-derived volcanic detritus. All three detrital components are present in the middle portion of the succession (Torra and Monte Sant'Angelo Formations), which is characterized by thin transitional deposits evolving vertically into fully marine deposits, although the carbonate intrabasinal component is predominant. The Monte Sant'Angelo Formation is characteristically dominated by the deposits of large gravel and sandwaves, possibly the result of current amplification in narrow seaways that developed between the foreland and the tectonically collapsing Alpine orogenic wedge. The laterally equivalent Saint-Florent conglomerate is composed of clasts derived from the late Permian Cinto volcanic district within the foreland. The uppermost unit (Farinole Formation) is dominated by bioclasts of pelagic organisms. The Saint-Florent succession was deposited during the last phase of the counterclockwise rotation of the Corsica,Sardinia,Calabria continental block and the resulting development of the Provençal oceanic basin. The succession sits at the paleogeographic boundary between the Alpine orogenic wedge (to the east), its foreland (to the west), and the Ligurian-Provençal basin (to the northwest). Abrupt compositional changes in the succession resulted from the complex, varying interplay of post-collisional extensional tectonism, eustacy and competing drainage systems. [source]


Morphology and origin of major Cenozoic sequence boundaries in the eastern North Sea Basin: top Eocene, near-top Oligocene and the mid-Miocene unconformity

BASIN RESEARCH, Issue 1 2001
M. Huuse
Unconformities in sedimentary successions (i.e. sequence boundaries) form in response to the interplay between a variety of factors such as eustasy, climate, tectonics and basin physiography. Unravelling the origin of sequence boundaries is thus one of the most pertinent questions in the analysis of sedimentary basins. We address this question by focusing on three of the most marked physical discontinuities (sequence boundaries) in the Cenozoic North Sea Basin: top Eocene, near-top Oligocene and the mid-Miocene unconformity. The Eocene/Oligocene transition is characterized by an abrupt increase in sediment supply from southern Norway and by minor erosion of the basin floor. The near-top Oligocene and the mid-Miocene unconformity are characterized by major changes in sediment input directions and by widespread erosion along their clinoform breakpoints. The mid-Miocene shift in input direction was followed by a marked increase in sediment supply to the southern and central North Sea Basin. Correlation with global ,18O records suggests that top Eocene correlates with a major long-term ,18O increase (inferred climatic cooling and eustatic fall). Near-top Oligocene does not correlate with any major ,18O events, while the mid-Miocene unconformity correlates with a gradual decrease followed by a major long-term increase in ,18O values The abrupt increases in sediment supply in post-Eocene and post-middle Miocene time correlate with similar changes worldwide and with major ,18O increases, suggesting a global control (i.e. climate and eustasy) of the post-Eocene sedimentation in the North Sea Basin. Erosional features observed at near-top Oligocene and at the mid-Miocene unconformity are parallel to the clinoform breakpoints and resemble scarps formed by mass wasting. Incised valleys have not been observed, indicating that sea level never fell significantly below the clinoform breakpoint during the Oligocene to middle Miocene. [source]