Home About us Contact | |||
Microtubule Network (microtubule + network)
Selected AbstractsLive-cell analysis of mitotic spindle formation in taxol-treated cellsCYTOSKELETON, Issue 8 2008Jessica E. Hornick Abstract Taxol functions to suppress the dynamic behavior of individual microtubules, and induces multipolar mitotic spindles. However, little is known about the mechanisms by which taxol disrupts normal bipolar spindle assembly in vivo. Using live imaging of GFP-, tubulin expressing cells, we examined spindle assembly after taxol treatment. We find that as taxol-treated cells enter mitosis, there is a dramatic re-distribution of the microtubule network from the centrosomes to the cell cortex. As they align there, the cortical microtubules recruit NuMA to their embedded ends, followed by the kinesin motor HSET. These cortical microtubules then bud off to form cytasters, which fuse into multipolar spindles. Cytoplasmic dynein and dynactin do not re-localize to cortical microtubules, and disruption of dynein/dynactin interactions by over-expression of p50 "dynamitin" does not prevent cytaster formation. Taxol added well before spindle poles begin to form induces multipolarity, but taxol added after nascent spindle poles are visible,but before NEB is complete,results in bipolar spindles. Our results suggest that taxol prevents rapid transport of key components, such as NuMA, to the nascent spindle poles. The net result is loss of mitotic spindle pole cohesion, microtubule re-distribution, and cytaster formation. Cell Motil. Cytoskeleton 2008. © 2008 Wiley-Liss, Inc. [source] Deletion of mdmB impairs mitochondrial distribution and morphology in Aspergillus nidulansCYTOSKELETON, Issue 2 2003Katrin V. Koch Abstract Mitochondria form a dynamic network of interconnected tubes in the cells of Saccharomyces cerevisiae or filamentous fungi such as Aspergillus nidulans,Neurospora crassa, or Podospora anserina. The dynamics depends on the separation of mitochondrial fragments, their movement throughout the cell, and their subsequent fusion with the other parts of the organelle. Interestingly, the microtubule network is required for the distribution in N. crassa and S. pombe, while S. cerevisiae and A. nidulans appear to use the actin cytoskeleton. We studied a homologue of S. cerevisiae Mdm10 in A. nidulans, and named it MdmB. The open reading frame is disrupted by two introns, one of which is conserved in mdm10 of P. anserina. The MdmB protein consists of 428 amino acids with a predicted molecular mass of 46.5 kDa. MdmB shares 26% identical amino acids to Mdm10 from S. cerevisiae, 35% to N. crassa, and 32% to the P. anserina homologue. A MdmB-GFP fusion protein co-localized evenly distributed along mitochondria. Extraction of the protein was only possible after treatment with a non-ionic and an ionic detergent (1% Triton X-100; 0.5% SDS) suggesting that MdmB was tightly bound to the mitochondrial membrane fraction. Deletion of the gene in A. nidulans affected mitochondrial morphology and distribution at 20°C but not at 37°C. mdmB deletion cells contained two populations of mitochondria at lower temperature, the normal tubular network plus some giant, non-motile mitochondria. Cell Motil. Cytoskeleton 55:114,124, 2003. © 2003 Wiley-Liss, Inc. [source] Genotoxicity of inorganic lead salts and disturbance of microtubule functionENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 4 2005Daniela Bonacker Abstract Lead compounds are known genotoxicants, principally affecting the integrity of chromosomes. Lead chloride and lead acetate induced concentration-dependent increases in micronucleus frequency in V79 cells, starting at 1.1 ,M lead chloride and 0.05 ,M lead acetate. The difference between the lead salts, which was expected based on their relative abilities to form complex acetato-cations, was confirmed in an independent experiment. CREST analyses of the micronuclei verified that lead chloride and acetate were predominantly aneugenic (CREST-positive response), which was consistent with the morphology of the micronuclei (larger micronuclei, compared with micronuclei induced by a clastogenic mechanism). The effects of high concentrations of lead salts on the microtubule network of V79 cells were also examined using immunofluorescence staining. The dose effects of these responses were consistent with the cytotoxicity of lead(II), as visualized in the neutral-red uptake assay. In a cell-free system, 20,60 ,M lead salts inhibited tubulin assembly dose-dependently. The no-observed-effect concentration of lead(II) in this assay was 10 ,M. This inhibitory effect was interpreted as a shift of the assembly/disassembly steady-state toward disassembly, e.g., by reducing the concentration of assembly-competent tubulin dimers. The effects of lead salts on microtubule-associated motor-protein functions were studied using a kinesin-gliding assay that mimics intracellular transport processes in vitro by quantifying the movement of paclitaxel-stabilized microtubules across a kinesin-coated glass surface. There was a dose-dependent effect of lead nitrate on microtubule motility. Lead nitrate affected the gliding velocities of microtubules starting at concentrations above 10 ,M and reached half-maximal inhibition of motility at about 50 ,M. The processes reported here point to relevant interactions of lead with tubulin and kinesin at low dose levels. Environ. Mol. Mutagen., 2005. © 2005 Wiley-Liss, Inc. [source] A putative role for cell cycle-related proteins in microtubule-based neuroplasticityEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 6 2009Stefanie Schmetsdorf Abstract Cyclins and cyclin-dependent kinases (Cdks) are the main components that control the orderly progression through cell cycle. In the mature nervous system, terminally differentiated neurons are permanently withdrawn from cell cycle, as mitotic quiescence is essential for the functional stability of the complexly wired neuronal system. Recently, we characterized the expression and colocalization of cyclins and Cdks in terminally differentiated pyramidal neurons. The functional impact of the expression of cell cycle-related proteins in differentiated neurons, however, has not been elucidated yet. In the present study, we show by immunoelectron microscopy and immunobiochemical methods an association of cyclins and Cdks with the microtubule network. Cyclins D, E, A and B as well as Cdks 1, 2 and 4 were also found to be associated with the microtubule-associated protein tau. Cyclin/Cdk complexes, in addition, exhibit kinase activity towards tau. In vitro, downregulation of cyclins and Cdks by a siRNA approach and by pharmacological inhibition promotes neurite extension. Taken together, these results indicate that the expression of cell cycle-related proteins in terminal differentiated neurons is associated with physiological functions beyond cell cycle control that might be involved in microtubule-based mechanisms of neuroplasticity. [source] Ca2+ - and thromboxane-dependent distribution of MaxiK channels in cultured astrocytes: From microtubules to the plasma membraneGLIA, Issue 12 2009J. W. Ou Abstract Large-conductance, voltage- and Ca2+ -activated K+ channels (MaxiK) are broadly expressed ion channels minimally assembled by four pore-forming ,-subunits (MaxiK,) and typically observed as plasma membrane proteins in various cell types. In murine astrocyte primary cultures, we show that MaxiK, is predominantly confined to the microtubule network. Distinct microtubule distribution of MaxiK, was visualized by three independent labeling approaches: (1) MaxiK,-specific antibodies, (2) expressed EGFP-labeled MaxiK,, and (3) fluorophore-conjugated iberiotoxin, a specific MaxiK pore-blocker. This MaxiK, association with microtubules was further confirmed by in vitro His-tag pulldown, co-immunoprecipitation from brain lysates, and microtubule depolymerization experiments. Changes in intracellular Ca2+ elicited by general pharmacological agents, caffeine or thapsigargin, resulted in increased MaxiK, labeling at the plasma membrane. More notably, U46619, an analog of thromboxane A2 (TXA2), which triggers Ca2+ -release pathways and whose levels increase during cerebral hemorrhage/trauma, also elicits a similar increase in MaxiK, surface labeling. Whole-cell patch clamp recordings of U46619-stimulated cells develop a ,3-fold increase in current amplitude indicating that TXA2 stimulation results in the recruitment of additional, functional MaxiK channels to the surface membrane. While microtubules are largely absent in mature astrocytes, immunohistochemistry results in brain slices show that cortical astrocytes in the newborn mouse (P1) exhibit a robust expression of microtubules that significantly colocalize with MaxiK,. The results of this study provide the novel insight that suggests that Ca2+ released from intracellular stores may play a key role in regulating the traffic of intracellular, microtubule-associated MaxiK, stores to the plasma membrane of developing murine astrocytes. © 2009 Wiley-Liss, Inc. [source] Formation of lipid raft redox signalling platforms in glomerular endothelial cells: an early event of homocysteine-induced glomerular injuryJOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 9b 2009Fan Yi Abstract The present study tested the hypothesis that homocysteine (Hcys)-induced ceramide production stimulates lipid rafts (LRs) clustering on the membrane of glomerular endothelial cells (GECs) to form redox signalling platforms by aggregation and activation of NADPH oxidase subunits and thereby enhances superoxide (O2.,) production, leading to glomerular endothelial dysfunction and ultimate injury or sclerosis. Using confocal microscopy, we first demonstrated a co-localization of LR clusters with NADPH oxidase subunits, gp91phox and p47phox in the GECs membrane upon Hcys stimulation. Immunoblot analysis of floated detergent-resistant membrane fractions found that in LR fractions NADPH oxidase subunits gp91phox and p47phox are enriched and that the activity of this enzyme dramatically increased. We also examined the effect of elevated Hcys on the cell monolayer permeability in GECs. It was found that Hcys significantly increased GEC permeability, which was blocked by inhibition of LR redox signalling platform formation. Finally, we found that Hcys-induced enhancement of GEC permeability is associated with the regulation of microtubule stability through these LR-redox platforms. It is concluded that the early injurious effect of Hcys on the glomerular endothelium is associated with the formation of redox signalling platforms via LR clustering, which may lead to increases in glomerular permeability by disruption of microtubule network in GECs. [source] RhoE stimulates neurite-like outgrowth in PC12 cells through inhibition of the RhoA/ROCK-I signallingJOURNAL OF NEUROCHEMISTRY, Issue 4 2010Raquel Talens-Visconti J. Neurochem. (2010) 112, 1074,1087. Abstract Neurite formation involves coordinated changes between the actin cytoskeleton and the microtubule network. Rho GTPases are clearly implicated in several aspects of neuronal development and function. Indeed, RhoA is a negative regulator of neurite outgrowth and its effector Rho-kinase mediates the Rho-driven neurite retraction. Considering that RhoE/round protein (Rnd3) acts antagonistically to RhoA and it is also able to bind and inhibit rho kinase-I (p160ROCK) , ROCK-I, it is tempting to speculate a role of RhoE in neurite formation. We show for the first time that, in the absence of nerve growth factor (NGF), RhoE induces neurite-like outgrowth. Our results demonstrate that over-expression of RhoE decreases the activity of RhoA and reduces the expression of both ROCK-I and the phosphorylated myosin light chain phosphatase (MLCPp). Conversely, over-expression of either active RhoA or ROCK-I abolishes the RhoE-promoted neurite outgrowth, suggesting that RhoE induces neurite-like formation through inhibition of the RhoA/ROCK-I signalling. We also show that Rac and Cdc42 have a role in RhoE-induced neurite outgrowth. Finally, the present data further indicate that RhoE may be involved in the NGF-induced neurite outgrowth in PC12 cells, as depletion of RhoE by siRNA reduces the neurite formation induced by NGF. These findings provide new insights into the molecular mechanism implicated in neuronal development and may provide novel therapeutic targets in neurodegenerative disorders. [source] Uptake Mechanism of Oppositely Charged Fluorescent Nanoparticles in HeLa CellsMACROMOLECULAR BIOSCIENCE, Issue 12 2008Julia Dausend Abstract The endocytotic mechanisms involved in the uptake of charged polystyrene nanoparticles into HeLa cells were investigated. Uptake experiments were done in the presence or absence of drugs known to inhibit various factors in endocytosis. Independent of the particle charge, endocytosis is highly dependent on dynamin, F-actin, and tyrosine-specific protein kinases, which suggests a dynamin-dependent and lipid raft-dependent mechanism. However, cholesterol depletion did not hinder particle uptake. Regarding positively charged particles, macropinocytosis, the microtubule network, and cyclooxygenases are also involved. The clathrin-dependent pathway plays a minor role. [source] Trafficking of macromolecules and organelles in cultured Dystonia musculorum sensory neurons is normalTHE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 4 2006Madeline Pool Abstract Dystonia musculorum (dt) mice suffer from a recessive neuropathy characterized by the progressive loss of sensory axons. The gene responsible for this disorder, dystonin/Bpag1, encodes several alternatively spliced forms of a cytoskeletal linker protein. Neural isoforms of dystonin/Bpag1 are predicted to link actin filaments to microtubules. Consistent with this, previous observations have demonstrated that the cytoskeleton within sensory neurites of dt mice is perturbed. Also, recent results have indicated that a neural isoform of dystonin/Bpag1 interacts with the dynein motor complex. Because microtubule organization and dynein motor function are essential for trafficking, we hypothesized that this process would be perturbed in dt sensory neurons. Here, we demonstrate that cultured primary dorsal root ganglion (DRG) neurons express dystonin/Bpag1 and that loss of this expression causes an increase in apoptosis and a decrease in average neurite length. In contrast, detailed examination showed that the organization of microtubules is indistinguishable in DRG neuronal cultures from neonatal dt and wild-type mice. In addition, the steady-state distribution of several molecules and organelles is unchanged in these cultures. Furthermore, the speeds of mitochondrial movement in both anterograde and retrograde directions were comparable in dt and wild-type sensory neurons cultured from neonatal mice. Thus, dystonin/Bpag1 is not essential for microtubule network assembly since the microtubule network is intact in short-term cultures of sensory neurons from neonatal mice lacking this protein. In addition, dystonin/Bpag1 is not an essential part of the dynein motor complex for mitochondrial transport since mitochondrial trafficking is normal in cultured sensory neurons from dt mice. J. Comp. Neurol. 494:549,558, 2006. © 2005 Wiley-Liss, Inc. [source] Re-organisation of the cytoskeleton during developmental programmed cell death in Picea abies embryosTHE PLANT JOURNAL, Issue 5 2003Andrei P. Smertenko Summary Cell and tissue patterning in plant embryo development is well documented. Moreover, it has recently been shown that successful embryogenesis is reliant on programmed cell death (PCD). The cytoskeleton governs cell morphogenesis. However, surprisingly little is known about the role of the cytoskeleton in plant embryogenesis and associated PCD. We have used the gymnosperm, Picea abies, somatic embryogenesis model system to address this question. Formation of the apical,basal embryonic pattern in P. abies proceeds through the establishment of three major cell types: the meristematic cells of the embryonal mass on one pole and the terminally differentiated suspensor cells on the other, separated by the embryonal tube cells. The organisation of microtubules and F-actin changes successively from the embryonal mass towards the distal end of the embryo suspensor. The microtubule arrays appear normal in the embryonal mass cells, but the microtubule network is partially disorganised in the embryonal tube cells and the microtubules disrupted in the suspensor cells. In the same embryos, the microtubule-associated protein, MAP-65, is bound only to organised microtubules. In contrast, in a developmentally arrested cell line, which is incapable of normal embryonic pattern formation, MAP-65 does not bind the cortical microtubules and we suggest that this is a criterion for proembryogenic masses (PEMs) to passage into early embryogeny. In embryos, the organisation of F-actin gradually changes from a fine network in the embryonal mass cells to thick cables in the suspensor cells in which the microtubule network is completely degraded. F-actin de-polymerisation drugs abolish normal embryonic pattern formation and associated PCD in the suspensor, strongly suggesting that the actin network is vital in this PCD pathway. [source] Ecdysteroid receptor (EcR) is associated with microtubules and with mitochondria in the cytoplasm of prothoracic gland cells of Rhodnius prolixus (Hemiptera)ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY (ELECTRONIC), Issue 4 2009Xanthe Vafopoulou Abstract We have shown previously that EcR in larval Rhodnius is present in the cytoplasm of various cell types and undergoes daily cycling in abundance in the cytoplasm (Vafopoulou and Steel, 2006. Cell Tissue Res 323:443,455). It is unknown which organelles are associated with EcR. Here, we report that cytoplasmic EcR in prothoracic gland cells is associated with both microtubules and mitochondria, and discuss the implications for both nuclear and non-genomic actions of EcR. EcR was localized immunohistochemically using several antibodies to EcR of Manduca and Drosophila and a confocal laser scanning microscope. Double labels were made to visualize EcR and (1) microtubules (using an antibody to tyrosylated ,-tubulin) and (2) mitochondria (using a fluorescent MitoTracker probe), both after stabilization of microtubules with taxol. EcR co-localized with both tubulin and mitochondria. All the different EcR antibodies produced similar co-localization patterns. EcR was seen in the perinuclear aggregation of mitochondria, indicating that mitochondria are targets of ecdysone, which could influence mitochondrial gene transcription. EcR was also distributed throughout the microtubule network. Co-localization of EcR with tubulin or mitochondria was maintained after depolymerization of microtubules with colchicine. Treatment with taxol resulted in accumulation of EcR in the cytoplasm and simultaneous depletion of EcR from the nucleus, suggesting that microtubules may be involved in targeted intracellular transport of EcR to the nucleus (genomic action) or may play a role in rapid ecdysone signal transduction in the extranuclear compartment, i.e., in non-genomic actions of ecdysone. These findings align EcR more closely with steroid hormone receptors in vertebrates. © 2009 Wiley Periodicals, Inc. [source] Force propagation and force generation in cells,CYTOSKELETON, Issue 9 2010Oliver Jonas Abstract Determining how forces are produced by and propagated through the cytoskeleton (CSK) of the cell is of great interest as dynamic processes of the CSK are intimately correlated with many molecular signaling pathways. We are presenting a novel approach for integrating measurements on cell elasticity, transcellular force propagation, and cellular force generation to obtain a comprehensive description of dynamic and mechanical properties of the CSK under force loading. This approach uses a combination of scanning force microscopy (SFM) and Total Internal Reflection Fluorescence (TIRF) microscopy. We apply well-defined loading schemes onto the apical cell membrane of fibroblasts using the SFM and simultaneously use TIRF microscopy to image the topography of the basal cell membrane. The locally distinct changes of shape and depth of the cytoskeletal imprints onto the basal membrane are interpreted as results of force propagation through the cytoplasm. This observation provides evidence for the tensegrity model and demonstrates the usefulness of our approach that does not depend on potentially disturbing marker compounds. We confirm that the actin network greatly determines cell stiffness and represents the substrate that mediates force transduction through the cytoplasm of the cell. The latter is an essential feature of tensegrity. Most importantly, our new finding that, both intact actin and microtubule networks are required for enabling the cell to produce work, can only be understood within the framework of the tensegrity model. We also provide, for the first time, a direct measurement of the cell's mechanical power output under compression at two femtowatts. © 2010 Wiley-Liss, Inc. [source] |