Microscopy Observations (microscopy + observation)

Distribution by Scientific Domains
Distribution within Polymers and Materials Science

Kinds of Microscopy Observations

  • atomic force microscopy observation
  • electron microscopy observation
  • force microscopy observation
  • scanning electron microscopy observation
  • transmission electron microscopy observation


  • Selected Abstracts


    SCANNING ELECTRON MICROSCOPY OBSERVATIONS OF DEFORMITIES IN SMALL PENNATE DIATOMS EXPOSED TO HIGH CADMIUM CONCENTRATIONS,

    JOURNAL OF PHYCOLOGY, Issue 6 2008
    Soizic Morin
    Different types of malformations are likely to affect the morphology of diatoms when exposed to particularly unstable environmental conditions, the most easily identifiable being distortion of the whole frustule. In the present study, we investigated, by means of SEM, valve abnormalities induced by high cadmium contamination (100 ,g · L,1) in small pennate diatoms. Changes in the shape of Amphora pediculus (Kütz.) Grunow and anomalous sculpturing of the cell wall of many species, such as Encyonema minutum (Hilse) D. G. Mann, Mayamaea agrestris (Hust.) Lange-Bert., Gomphonema parvulum (Kütz.) Kütz., or Eolimna minima (Grunow) Lange-Bert., were observed, which were not, or almost not, noticeable in the LM. With consideration to current knowledge of diatom morphogenesis, metal uptake by the cell would induce, directly or indirectly, damage to many cytoplasmic components (e.g., microtubules, cytoskeleton, Golgi-derived vesicles) involved in the precisely organized silica deposition. This study confirms that many species, whatever their size, are likely to exhibit morphological abnormalities under cadmium stress, and that this indicator may be valuable for the biomonitoring of metal contamination, even if SEM observations are not necessary for routine studies. [source]


    Mucoadhesive microspheres for nasal administration of an antiemetic drug, metoclopramide: in-vitro/ex-vivo studies

    JOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 3 2005
    Elisabetta Gavini
    Microparticulate delivery systems designed for the nasal administration of an antiemetic drug, metoclopramide hydrochloride, were prepared. Microspheres composed of sodium alginate, chitosan hydrochloride, or both, were obtained using a spray-drying method; some batches of drug-free microparticles were prepared as a comparison. The morphology, in-vitro swelling behaviour, mucoadhesive properties and drug release from microparticles were evaluated. Ex-vivo drug permeation tests were carried out using sheep nasal mucosa; permeation test of the drug solution was peformed as comparison. During ex-vivo permeation tests, transmission electron microscopy (TEM) analyses were carried out on the nasal mucosa to study the morphological changes of epithelial cells and tight junctions, while the change in microsphere morphology was examined using photostereo microscopy (PM). Spray-dried microparticles had a mean diameter (dvs) in the range of about 3,10 ,m. They showed good in-vitro mucoadhesive properties. In-vitro release profiles and swelling behaviour depended on their composition: the drug release occurred in 1,3 h. Ex-vivo studies showed that drug permeation through the mucosa from microparticles based on chitosan was higher than from those consisting of alginate alone. This can be related to the penetration enhancing properties of chitosan. Complexation of chitosan with alginate led to a control of the drug release. Microscopy observation of microspheres during the permeation tests revealed that microparticles swelled and gelled, maintaining their shape. TEM analyses of the mucosa after exposure to the microparticles consisting of alginate/chitosan showed opened tight junctions. This preliminary study shows that alginate/chitosan spray-dried microspheres have promising properties for use as mucoadhesive nasal carriers of an antiemetic drug. [source]


    A Chemical Route to BiNbO4 Ceramics

    INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY, Issue 2 2009
    Oleg A. Shlyakhtin
    The liquid phase sintering of fine BiNbO4 powders allows to obtain dense ceramics with excellent microwave dielectric properties (,=44,46; Q×f=16,500,21,600 GHz) at T,700°C. The thermal decomposition of freeze-dried precursors results in the crystallization of a metastable ,,-BiNbO4 polymorph that transforms into a stable orthorhombic ,-modification at T,700°C. The dependence of sinterability on the powder synthesis temperature shows the maximum at 600°C, corresponding to the formation of crystalline BiNbO4 powders with a grain size 80,100 nm. Sintering temperature reduction to 700°C prevents the deterioration of silver contacts during co-firing with BiNbO4 ceramics. In situ scanning electron microscopy observation of the morphological evolution during sintering shows that the intense shrinkage soon after the appearance of a CuO,V2O5 eutectics-based liquid phase is accompanied by complete transformation of the ensemble of primary BiNbO4 particles. [source]


    Synthesis and properties of methacrylate-based networked polymers having ionic liquid structures

    JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 20 2010
    Kozo Matsumoto
    Abstract Methacrylate-based networked polymers having ionic liquid structures were prepared by radical copolymerization of methyl methacrylate (MMA) with multifunctional crosslinkers: ethyleneglycol dimethacrylate (EGDMA), trimethylolpropane trimethacrylate (TMPTMA), or triethyleneglycol dimethacrylate (TEGDMA), in the presence of 1-ethyl-3-methylethyl-1-imidazolium bis(trifluoromethane)sulfonyl imide (EMImTFSI). The fundamental physical properties of several film samples prepared by varying the monomer composition and ionic liquid content were investigated. The obtained materials became turbid with increasing crosslinker content and ionic liquid content. Their ionic conductivity increased with increasing ionic liquid content, while it was almost independent of the crosslinker content. EGDMA-derived materials and TMPTMA-derived materials showed higher ionic conductivity than TEGDMA-derived materials. TMPTMA-derived materials showed higher thermal stability than EGDMA or TEGDMA-derived materials. EGDMA and TMPTMA-derived materials were stiffer than the TEGDMA-derived materials. The elastic modulus of the film samples increased but the film became more brittle with the increase of crosslinker content. Scanning electron microscopy and atomic force microscopy observation revealed that phase separation of networked polymers and ionic liquid occurred in the highly crosslinked samples, and the phase separation structures became larger in scale with the increase of crosslinking density. This phase separation was considered to have a strong effect on the mechanical properties of the film samples. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010 [source]


    Photoluminescence from Boron-Doped Titanium Nitride Nanocomposite Thin Films Prepared by the Magnetron Sputtering Method

    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 12 2007
    Sheng-Guo Lu
    Boron-doped titanium nitride (TiBN) thin films with nanosized grains were prepared by a magnetron sputtering method. X-ray diffraction and transmission electron microscopy observation indicated that TiBN thin films have a cubic structure with grains ,5 nm in size. The photoluminescence (PL) of the films was investigated as a function of temperature over a wavelength range of 350,900 nm. Two PL peaks near 3.20 and 2.38 eV were conisdered to have resulted from the recombination of the donor-bound excitons and deep-trap defects with the holes in the valence band, respectively. An energy transfer from bound electrons to deep-trap defects was observed in the nanocomposite thin film. [source]


    A Novel N -Succinylchitosan- graft -Polyacrylamide/Attapulgite Composite Hydrogel Prepared through Inverse Suspension Polymerization

    MACROMOLECULAR MATERIALS & ENGINEERING, Issue 8 2007
    Ping Li
    Abstract A novel N -succinylchitosan- graft -polyacrylamide/attapulgite composite hydrogel was prepared by using N -succinylchitosan, acrylamide and attapulgite through inverse suspension polymerization. The result from FTIR spectra showed that OH of attapulgite, OH and NHCO of N -succinylchitosan participated in graft polymerization with acrylamide. The introduced attapulgite could enhance thermal stability of the hydrogel. Scanning electron microscopy observation indicates that the composite hydrogel has a microporous surface. The volume ratio of heptane to water, weight ratio of acrylamide to N -succinylchitosan and attapulgite content have great influence on swelling ability of the composite hydrogel. The composite hydrogel shows higher swelling rate and pH-sensitivity compared to that of without attapulgite. [source]


    High-quality InN grown on KOH wet etched N-polar InN template by RF-MBE

    PHYSICA STATUS SOLIDI (A) APPLICATIONS AND MATERIALS SCIENCE, Issue 7 2006
    D. Muto
    Abstract We have succeeded in dramatically decreasing the density of dislocations in InN by regrowing InN films on micro-facetted N-polar InN templates. The micro-facetted N-polar InN templates were formed by wet etching in a 10 mol/l KOH solution. InN films were regrown on the micro-facetted N-polar InN templates and on flat surface N-polar InN templates for comparison by radio-frequency plasma-assisted molecular beam epitaxy. InN regrown on micro-facetted InN had considerably smaller twist distribution than that grown on the flat InN templates. From transmission electron microscopy observation, it was confirmed that the InN grown on the micro-facetted InN template had much lower density of dislocations than that grown on the flat InN template, and moreover the propagation of edge dislocations was almost completely terminated at the interface between the regrown InN and the micro-facetted InN template. Based on the results, we propose that regrowth of InN on micro-facetted InN templates is an effective way to obtain high-quality InN films. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


    Influence of melt-blending conditions on structural, rheological, and interfacial properties of polyamide-12 layered silicate nanocomposites

    POLYMER ENGINEERING & SCIENCE, Issue 8 2006
    Pascal Médéric
    The influence of the melt-blending conditions on the structural, rheological, and interfacial properties of modified montmorillonite/Polyamide-12 nanocomposites has been studied performing transmission electron microscopy observation combined with X-Ray diffraction and rheological experiments. In the dilute regime, for short mixing times, the apparent aspect ratio of primary clay entities, determined from intrinsic viscosity measurements, is shown to increase with rotational speed. At high blade rotational speeds, the viscometric results suggest an almost achieved exfoliation, as confirmed by transmission electron microscopy micrographs. For longer mixing times, a significant drop of viscous dissipation is observed, which is very marked at high blade rotational speeds and attributed to a modification of the particle/matrix interface. In the concentrated regime, the rheological behavior of nanocomposites is attributed to the formation of a network of mesoscopic domains, composed of correlated clay entities. Upon increasing strain during mixing, the clay aggregates within these domains break into intercalated stacks and finally exfoliated layers, as shown by transmission electron microscopy micrographs and wide-angle X-ray diffraction patterns. The melt state elastic and viscous properties of the nanocomposites are mainly governed by the networked domains, and not by the nature and properties of the structure within the domains. POLYM. ENG. SCI. 46:986,994, 2006. © 2006 Society of Plastics Engineers. [source]


    Brittle,ductile transition in the PETG/PC blends by adding PTW elastomer

    POLYMERS FOR ADVANCED TECHNOLOGIES, Issue 6 2010
    Xinlan Zhang
    Abstract In this paper, an elastomer containing epoxy groups, ethylene-butylacrylate-glycidylmethacrylate (PTW), was used as toughening modifier for the poly(ethylene glycol-co-cyclohexane-1,4-dimethanol terephthalate) (PETG)/polycarbonate (PC) blends. A remarkable improvement of toughness was achieved by addition of only 5,wt% PTW. In particular, an obvious brittle,ductile (B,D) transition in impact toughness was found when the PTW content increased from 3 to 5,wt%. The toughening mechanism and observed B,D transition have been explored in detail, combining with electronic microscopy observation, melt rheological investigation and dynamic mechanical analysis (DMA). It is suggested that the B,D transition can be attributed to a better interfacial adhesion between different phases, and importantly, to a continuum percolation dispersed-phases network formed at appropriate PTW content, in which PC particles are connected with each other by PTW phase. Our present study offers new, profound insight on the toughening mechanism for the elastomer modified amorphous/amorphous plastic blends. Copyright © 2009 John Wiley & Sons, Ltd. [source]


    Effects of tributyltin(IV) chloride on the gametes and fertilization of Ascidia malaca (Ascidiacea: Tunicata)

    APPLIED ORGANOMETALLIC CHEMISTRY, Issue 2 2003
    L. Villa
    Abstract Ascidia malaca gametes before fertilization incubated in 10,5 or 10,7,M solutions of tributyltin(IV) chloride, TBTCl, for 3,h appear highly damaged under transmission electron microscopy observation. Also, the fertilization process is affected by the compound: the damaged spermatozoa are present in the vitelline coat and the egg does not cleave. An increase of microbodies, structurally similar to peroxisomes, have been detected in the egg peripheral cytoplasm, probably in relation to their role in alleviating damage to some cellular components. The results have shown that the reproduction of ascidians under unfavourable environmental conditions is prevented. Copyright © 2003 John Wiley & Sons, Ltd. [source]


    Self-organized and highly ordered domain structures within swarms of Myxococcus xanthus

    CYTOSKELETON, Issue 3 2006
    Andrew E. Pelling
    Abstract Coordinated group movement (swarming) is a key aspect of Myxococcusxanthus' social behavior. Here we report observation of domain structures formed by multiple cells within large three-dimensional swarming groups grown on amorphous glass substrates, using the atomic force microscope (AFM). Novel analyses revealed that ,90% of the wild type swarms displayed some form of preferential cell alignment. In contrast, cells with mutations in the social and adventurous motility systems displayed a distinct lack of cell alignment. Video microscopy observations of domain features of in vivo swarming M.xanthus cells were also consistent with the AFM data. The results presented here reveal that unique domain formation within swarms of wild type cells is a biologically driven process requiring the social and adventurous motility systems and is not a statistical phenomenon or thermodynamic process arising from liquid crystal behavior. Cell Motil. Cytoskeleton 63, 2006. © 2006 Wiley-Liss, Inc. [source]


    Effects of additional and extended acid etching on bonding to caries-affected dentine

    EUROPEAN JOURNAL OF ORAL SCIENCES, Issue 5 2004
    César Augusto Galvão Arrais
    This study evaluated the effects of additional and extended acid etching on microtensile bond strength (µTBS) of two adhesive systems to sound (SD) and caries-affected dentine (CAD). Flat surfaces of CAD surrounded by SD of 36 extracted carious third molars were assigned to four treatments (i): self-etching adhesive system (Clearfil SE Bond) applied to dentine surfaces following manufacturer's instructions (MI); (ii) after additional etching for 15 s (35% phosphoric acid, PA); (iii) total-etch one-bottle adhesive (Single Bond) applied to dentine surfaces following MI; or (iv), after etching for 45 s with PA. Composite ,blocks' were built on bonded surfaces and restored teeth were vertically sectioned to obtain bonded slices of 0.7 mm thick. Slices were trimmed to create hourglass-shaped specimens (cross-sectional area of 1 mm2), which were tested under tension in a universal testing machine. Additional CAD and SD samples were prepared for scanning electron microscopy observations. Additional and extended etching significantly increased µTBS to CAD; however, µTBS of both adhesives to CAD were significantly lower than to SD. Additional and extended etching can improve bonding to CAD; however, adhesives applied on SD showed the best results for bonding. [source]


    Interaction of the alpha-helical H6 peptide from the pro-apoptotic protein tBid with cardiolipin

    FEBS JOURNAL, Issue 21 2009
    Patrice X. Petit
    BH3 interacting domain death agonist (Bid), a pro-apoptotic member of the Bcl-2 family of proteins, is activated through cleavage by caspase-8. The active C-terminal fragment of Bid (tBid) translocates to the mitochondria where it interacts with cardiolipins at contact sites and induces the release of cytochrome c by a mechanism that is not yet fully understood. It has been shown that the alpha-helices ,H6 and ,H7 (which create the hairpin-forming domain of tBid) mediate the insertion of Bid into mitochondrial membranes and are essential for the cytochrome c -releasing activity. In the present study, we focused on the interaction between the ,H6 and the mitochondrial membrane. By the use of single-cell electropermeabilization associated with flow cytometric analysis of intact cells, we demonstrated that H6 is able to induce cell death when used in the micromolar range. We also studied the interactions of the ,H6 with artificial monolayers. We showed that the presence of negatively charged cardiolipins greatly enhances the insertion of ,H6 into the phospholipid monolayer. The modification of two charged amino acid residues in ,H6 abolished its insertion and also its in vivo effects. Furthermore, the negative values of the excess areas of mixing indicate that attractive interactions between cardiolipins and ,H6 occur in the mixed monolayers. Fluorescence microscopy observations revealed that ,H6 significantly disrupts cardiolipin packing and stabilizes the fluid lipid phase. These results suggest that cardiolipins at the contact sites between the two mitochondrial membranes could mediate the binding of tBid via ,H6. [source]


    Evidence for plant viruses in the region of Argentina Islands, Antarctica

    FEMS MICROBIOLOGY ECOLOGY, Issue 2 2007
    Valery Polischuk
    Abstract This work focused on the assessment of plant virus occurrence among primitive and higher plants in the Antarctic region. Sampling occurred during two seasons (2004/5 and 2005/6) at the Ukrainian Antarctic Station ,Academician Vernadskiy' positioned on Argentina Islands. Collected plant samples of four moss genera (Polytrichum, Plagiatecium, Sanionia and Barbilophozia) and one higher monocot plant species, Deschampsia antarctica, were further subjected to enzyme-linked immunosorbent assay to test for the presence of common plant viruses. Surprisingly, samples of Barbilophozia and Polytrichum mosses were found to contain antigens of viruses from the genus Tobamovirus, Tobacco mosaic virus and Cucumber green mottle mosaic virus, which normally parasitize angiosperms. By contrast, samples of the monocot Deschampsia antarctica were positive for viruses typically infecting dicots: Cucumber green mottle mosaic virus, Cucumber mosaic virus and Tomato spotted wilt virus. Serological data for Deschampsia antarctica were supported in part by transmission electron microscopy observations and bioassay results. The results demonstrate comparatively high diversity of plant viruses detected in Antarctica; the results also raise questions of virus specificity and host susceptibility, as the detected viruses normally infect dicotyledonous plants. However, the means of plant virus emergence in the region remain elusive and are discussed. [source]


    Microstructure-Lattice Thermal Conductivity Correlation in Nanostructured PbTe0.7S0.3 Thermoelectric Materials

    ADVANCED FUNCTIONAL MATERIALS, Issue 5 2010
    Jiaqing He
    Abstract The reduction of thermal conductivity, and a comprehensive understanding of the microstructural constituents that cause this reduction, represent some of the important challenges for the further development of thermoelectric materials with improved figure of merit. Model PbTe-based thermoelectric materials that exhibit very low lattice thermal conductivity have been chosen for this microstructure,thermal conductivity correlation study. The nominal PbTe0.7S0.3 composition spinodally decomposes into two phases: PbTe and PbS. Orderly misfit dislocations, incomplete relaxed strain, and structure-modulated contrast rather than composition-modulated contrast are observed at the boundaries between the two phases. Furthermore, the samples also contain regularly shaped nanometer-scale precipitates. The theoretical calculations of the lattice thermal conductivity of the PbTe0.7S0.3 material, based on transmission electron microscopy observations, closely aligns with experimental measurements of the thermal conductivity of a very low value, ,0.8,W,m,1,K,1 at room temperature, approximately 35% and 30% of the value of the lattice thermal conductivity of either PbTe and PbS, respectively. It is shown that phase boundaries, interfacial dislocations, and nanometer-scale precipitates play an important role in enhancing phonon scattering and, therefore, in reducing the lattice thermal conductivity. [source]


    An Optically Active Polythiophene Exhibiting Electrochemically Driven Light-Interference Modulation

    ADVANCED FUNCTIONAL MATERIALS, Issue 9 2009
    Hiromasa Goto
    Abstract Optically active polythiophene (PT*) is successfully prepared by electrochemical polymerization using a cholesteric liquid crystal (CLC) electrolyte solution. Polarizing optical microscopy observations of the polymer reveal a well-resolved fingerprint texture similar to the optical texture of the CLC. Circular dichroism measurements indicate a Cotton effect. The PT* film produced by the asymmetric polymerization in CLC exhibits a variable diffraction function, electrochemically driven refractive index modulation, and electrochromism originating from the periodic dielectric structure, representing a form of structural electrochromism. [source]


    Encapsulation and Ostwald Ripening of Au and Au,Cl Complex Nanostructures in Silica Shells,

    ADVANCED FUNCTIONAL MATERIALS, Issue 13 2006
    W. Lou
    Abstract We report a general template strategy for rational fabrication of a new class of nanostructured materials consisting of multicore shell particles. Our approach is demonstrated by encapsulating Au or Pt nanoparticles in silica shells. Other superstructures of these hollow shells, like dimers, trimers, and tetramers can also be formed by nanoparticle-mediated self-assembly. We have also used the as-prepared multicore Au,silica hollow particles to perform the first studies of Ostwald ripening in confined microspace, in which chloride was found to be an efficient mediating ligand. After treatment with aqua regia, Au,Cl complex is formed inside the shell, and is found to be very active under in,situ transmission electron microscopy observations while confined in a microcell. This aspect of the work is expected to motivate further in,situ studies of confined crystal growth. [source]


    Analysis of micro fracture in human Haversian cortical bone under transverse tension using extended physical imaging

    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 8 2010
    É. Budyn
    Abstract We propose a procedure to investigate local stress intensity factors at the scale of the osteons in human Haversian cortical bone. The method combines a specific experimental setting for a three-point bending millimetric specimen and a numerical method using the eXtended Finite Element Method (X-FEM). The interface between the experimental setting and the numerical method is ensured through an imaging technique that analyses the light microscopy observations to import the geometrical heterogeneity of the Haversian microstructures, the boundary conditions and appearing crack discontinuities into the numerical model. The local mechanical elastic Young's moduli are measured by nano-indentation, and the Poisson ratios are determined by an imaging technique of the stress,strain fields. The model is able to access three scales of measurement: the macro scale of the material level (mm), the micro scale inside the Haversian material for stress,strain fields (10,100µm), and the sub-micro scale for the crack opening profiles (1,10µm ) and fracture parameters (stress intensity factors). The model is applied to several patients at different aging stages. Copyright © 2009 John Wiley & Sons, Ltd. [source]


    Cell Proliferation of Human Fibroblasts on Alumina and Hydroxyapatite-Based Ceramics with Different Surface Treatments,

    INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY, Issue 2 2010
    Juliana Marchi
    Biocompatibility is an important characteristic of dental implant material, and in vitro tests are required to elucidate the interaction between these materials and human tissues. Cell proliferation assays were done with fibroblasts plated on the surface of alumina and hydroxyapatite sintered samples, each with a different surface treatment (sintered, rectified, or polished). After 1, 2, and three days, the samples were prepared for scanning electron microscopy observations. The data were compared by analysis of variance followed by Tukey's test. It was concluded that neither the hydroxyapatite or alumina substrate is cytotoxic, and hydroxyapatite is more biocompatible than alumina. [source]


    A novel simple technique for en face endothelial observations using water-soluble media ,,thinned-wall' preparations

    JOURNAL OF ANATOMY, Issue 2 2008
    L. Jelev
    Abstract A new, easily applicable technique providing en face preparations for light microscopy observations of the rat aorta and human thin wall arteries is described here. The major steps of the technique include attachment of the fixed and flattened vessel with the endothelium face down on a glass slide, covered with a water-soluble adhesive medium; drying and softening the vessel wall with another water-soluble medium; removal of the adventitia and most of the media; detaching the layer by placing the glass slide in water; and final attachment of the layer with the endothelium upwards. On such ,thinned-wall' preparations, 40,50 µm in thickness, the stained endothelial cells are clearly visible. Because of the preparation thickness and the use of water-soluble media during the preparation, some subendothelial lipid accumulations, characteristic of the early stages of atherosclerosis process, are well preserved. [source]


    Early nephron formation in the developing mouse kidney

    JOURNAL OF ANATOMY, Issue 4 2001
    JONATHAN B. L. BARD
    This paper reports 3-dimensional confocal microscopy observations on how nephrogenic aggregates form from the NCAM- and Pax2-positive caps (4,5 cells deep) of condensed metanephric mesenchyme surrounding the duct tips of the mouse kidney. Aggregates of 6,8 cells are first seen at ,E12.5,12.75 immediately proximal to this cap, closely abutting the duct surface. As the tip advances, NCAM expression is maintained in the cap but is otherwise restricted to aggregates whose cells rapidly epithelialise, forming tubules that invade the duct epithelium. Pax2 expression studies shows how the rind of nephrogenic blastemal cells forms: as duct tips extend towards the kidney surface, the associated Pax2+ cells form patches of cells on the kidney surface. These observations revise our knowledge of the timing and process of nephron initiation. [source]


    Electrospun polylactide/silk fibroin,gelatin composite tubular scaffolds for small-diameter tissue engineering blood vessels

    JOURNAL OF APPLIED POLYMER SCIENCE, Issue 4 2009
    Shudong Wang
    Abstract Many synthetic scaffolds have been used as vascular substitutes for clinical use. However, many of these scaffolds may not show suitable properties when they are exposed to physiologic vascular environments, and they may fail eventually because of some unexpected conditions. Electrospinning technology offers the potential for controlling the composition, structure, and mechanical properties of scaffolds. In this study, a tubular scaffold (inner diameter = 4.5 mm) composed of a polylactide (PLA) fiber outside layer and a silk fibroin (SF),gelatin fiber inner layer (PLA/SF,gelatin) was fabricated by electrospinning. The morphological, biomechanical, and biological properties of the composite scaffold were examined. The PLA/SF,gelatin composite tubular scaffold possessed a porous structure; the porosity of the scaffold reached 82 ± 2%. The composite scaffold achieved the appropriate breaking strength (1.28 ± 0.21 MPa) and adequate pliability (elasticity up to 41.11 ± 2.17% strain) and possessed a fine suture retention strength (1.07 ± 0.07 N). The burst pressure of the composite scaffold was 111.4 ± 2.6 kPa, which was much higher than the native vessels. A mitochondrial metabolic assay and scanning electron microscopy observations indicated that both 3T3 mouse fibroblasts and human umbilical vein endothelial cells grew and proliferated well on the composite scaffold in vitro after they were cultured for some days. The PLA/SF,gelatin composite tubular scaffolds presented appropriate characteristics to be considered as candidate scaffolds for blood vessel tissue engineering. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 [source]


    Distribution of acrylic acid grafted chains introduced into polyethylene film by simultaneous radiation grafting with water and ethanol as solvents

    JOURNAL OF APPLIED POLYMER SCIENCE, Issue 3 2007
    Zhengchi Hou
    Abstract The graft copolymerization of acrylic acid onto low-density polyethylene films by simultaneous ,-ray irradiation was carried out. The effect of water and ethanol as grafting solvents on the distribution of grafted poly (acrylic acid) in the low-density polyethylene films was studied with optical microscopy observations of dyed and sliced samples and attenuated total reflection/Fourier infrared spectroscopy analysis. When no vigorous homopolymerization occurred, both polyethylene and poly(acrylic acid) existed in the grafted layer, and the thickness of the grafted layer and the poly(acrylic acid) concentration in the grafted layer increased with an increasing degree of grafting, regardless of the grafting conditions, the former increasing faster than the latter. In comparison with water as the solvent, in the absence of the inhibitor, homopolymerization could be suppressed to a certain degree in the ethanol solvent system, whereas in the presence of the inhibitor, obvious homopolymerization occurred at a lower monomer concentration, and both the degree of grafting and the thickness of the grafted layer were lower. Such differences could be explained by the chain transfer and the relatively low solubility of poly(acrylic acid) in ethanol. In addition, an experimental scheme using optical microscopy to observe the dyed and sliced polymers was optimized. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1570,1577, 2007 [source]


    Fire-resistant effect of nanoclay on intumescent nanocomposite coatings

    JOURNAL OF APPLIED POLYMER SCIENCE, Issue 3 2007
    Zhen-yu Wang
    Abstract The aim of the study is the development of an intumescent nanocomposite coating to provide fire protection for the metallic substrate. Acrylic nanocomposites containing nanoclay and relative intumescent nanocoatings are prepared. The effect of nanoclay on the thermal degradation of an intumescent nanocomposite coating is analyzed by using differential thermal analysis, thermogravimetry, and X-ray diffraction. The influence of the added content of nanoclay on fire performance is studied by a fire protection test and measurements of the limiting oxygen index and effective thermal conductivity. The distribution of nanoparticles in the acrylic nanocomposite is characterized by transmission electron microscopy. The flame-retardant efficiency of the intumescent nanocomposite coating is improved by 1.5% well-distributed nanoclay particles. However, 3% nanoclay produces a negative effect on the fire performance of the coating. Fire protection tests and scanning electron microscopy observations reveal that the fire-retardant property of a conventional intumescent coating is destroyed by aging, whereas the nanocomposite coating modified with 1.5% nanoclay demonstrates good aging and fire resistance. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1681,1689, 2007 [source]


    Localization of nucleophosmin in nuclear matrix and changes in its expression during the differentiation of human neuroblastoma induced by retinoic acid,

    JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 1 2010
    Song-Lin Shi
    Abstract In this article, we selectively extracted the nuclear matrix and intermediate filament system of human neuroblastoma SK-N-SH cells pre- and post-treated with retinoic acid (RA). The distribution of nucleophosmin (NPM) in the nuclear matrix and its colocalization with several products of related genes were investigated. Results from two-dimensional gel electrophoresis and MALDI-TOF showed that NPM was a component of the nuclear matrix and its expression in SK-N-SH cells post-treated with RA was down-regulated. Immunofluorescent microscopy observations further showed that NPM was localized in the nuclear matrix of SK-N-SH cells, and its expression level and distribution were altered after treatment with RA. The colocalization of NPM with c-myc, c-fos, p53, and Rb in SK-N-SH cells was observed under a laser scanning confocal microscope, but the colocalization region was changed by RA. Our results prove that NPM is a nuclear matrix protein, which is localized in nuclear matrix fibers. The colocalization of NPM with its related genes and oncogenes affect the differentiation of SK-N-SH cells. The expression of NPM and its distribution in the process of cell differentiation deserve more intensive investigation. J. Cell. Biochem. 111: 67,74, 2010. © 2010 Wiley-Liss, Inc. [source]


    Super-silicic garnet microstructures from an orogenic garnet peridotite, evidence for an ultra-deep (>6 GPa) origin

    JOURNAL OF METAMORPHIC GEOLOGY, Issue 2 2000
    Van Roermund
    We report the field, petrographic and mineral chemical characteristics of relict super-silicic (=majoritic) garnet microstructures from the Otrøy peridotites in the Western Gneiss Region, Norway. The evidence for the former existence of super-silicic garnet consists of two-pyroxene exsolution microstructures from garnet. Estimates of the initial composition of the super-silicic garnet imply pressures of 6,6.5 GPa, indicating that the Otrøy garnet peridotites were derived from depths >185 km. The garnet peridotites consist of inter-banded variable compositions with c. 50% garnet peridotite and 50% garnet-free peridotite. Two distinct garnet types were identified: (a) normal matrix garnet, grain-size ,4 mm, and (b) large isolated single garnet crystals and/or (polycrystalline) garnet nodules up to 10 cm in size. Large garnet nodules occur only within limited bands within the garnet peridotites. The relicts of super-silicic garnet were exclusively found in some (not all) of the larger garnet nodules. Petrographic observations revealed that the microstructure of nodular garnet consists of the following four characteristic elements. (1) Individual garnet nodules are polycrystalline, with grain sizes of 2,8 mm. Garnet grain boundaries are straight with well-defined triple junctions. (2) Some garnet triple junctions and garnet grain boundaries are decorated by interstitial orthopyroxene. (3) Cores of larger polycrystalline garnet contain two-pyroxene exsolution microstructures. (4) Precipitation-free rims (2 mm thick) surround garnet cores containing the exsolved pyroxene microstructure. Pyroxene exsolution from super-silicic garnet was subsequently followed by brittle,ductile deformation of garnet. Both exsolved pyroxene needles and laths become undulous or truncated by fractures. Simultaneous garnet plasticity is indicated by the occurrence of high densities of naturally decorated dislocations. Transmission electron microscopy observations indicate that decoration is due to Ti-oxide precipitation. Estimates of the P,T conditions for mineral chemical equilibration were obtained from geothermobarometry. The mineral compositions equilibrated at mantle conditions around 805±40 °C and 3.2±0.2 GPa. These P,T estimates correspond to cold continental lithosphere conditions at depths of around 105 km. From a combination of both depth estimates it can be concluded that the microstructural memory of the rock extends backwards to twice as great a depth range as obtained by thermobarometric methods. Available geochronological and geochemical data of Norwegian garnet peridotites suggest a multi-stage, multi-orogenic exhumation history. [source]


    Direct atomic force microscopy observations of monovalent ion induced binding of DNA to mica

    JOURNAL OF MICROSCOPY, Issue 3 2004
    J. S. ELLIS
    Summary Multivalent ions in solution are known to mediate attraction between two like-charged molecules. Such attraction has proved useful in atomic force microscopy (AFM) where DNA may be immobilized to a mica surface facilitating direct imaging in liquid. Theories of DNA immobilization suggest that either ,salt bridging' or fluctuation in the positions of counter ions about both the mica surface and DNA backbone secure DNA to the mica substrate. Whilst both theoretical and experimental evidence suggest that immobilization is possible in the presence of divalent ions, very few studies identify that such immobilization is possible with monovalent ions. Here we present direct AFM evidence of DNA immobilized to mica in the presence of only monovalent ions. Our data depict E. coli plasmid pBR322 adsorbed onto the negatively charged mica both after short (10 min) and long (24 h) incubation periods. These data suggest the need to re-explore current theories of like-charge attraction to include the possibility of monovalent interactions. We suggest that this DNA immobilization strategy may offer the potential to image natural processes with limited immobilization forces and hence enable maximum conformational freedom of the immobilized biomolecule. [source]


    Thermal analysis of frozen solutions: Multiple glass transitions in amorphous systems

    JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 9 2009
    Gregory A. Sacha
    Abstract Frozen aqueous solutions of sucrose exhibit two "glass transition-like" thermal events below the melting endotherm of ice when examined by DSC, but the physical basis of these events has been a source of some disagreement. In this study, a series of sugars, including sucrose, lactose, trehalose, maltose, fructose, galactose, fucose, mannose, and glucose were studied by modulated DSC and freeze-dry microscopy in order to better understand whether sucrose is unique in any way with respect to this behavior, as well as to explore the physical basis, and the pharmaceutical significance of these multiple transitions. Double transitions were found to be a common feature of all sugars examined. The results are consistent with both thermal events being glass transitions in that (1) both events have second-order characteristics that appear in the reversing signals, (2) annealing experiments reveal that enthalpy recovery is associated with each transition, and (3) Lissajous plots indicate that no detectable latent heat of melting is associated with either transition. The data in this study are consistent with the idea that the lower temperature transition arises from a metastable glassy mixture containing more water than that in the maximally freeze-concentrated solute. Freeze-dry microscopy observations show that for all of the sugars examined, it is the higher temperature transition that is associated with structural collapse during freeze-drying. There is no apparent pharmaceutical significance associated with the lower-temperature transition. © 2009 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 98:3397,3405, 2009 [source]


    Preparation and properties of polyhedral oligosilsequioxane tethered aromatic polyamide nanocomposites through Michael addition between maleimide-containing polyamides and an amino-functionalized polyhedral oligosilsequioxane

    JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 15 2006
    Ying-Ling Liu
    Abstract Polyhedral oligosilsequioxane (POSS) tethered aromatic polyamide nanocomposites with various POSS fractions were prepared through Michael addition between maleimide-containing polyamides and amino-functionalized POSS. The chemical structures of the polyamide,POSS nanocomposites were characterized with Fourier transform infrared and 1H NMR. The polyamide,POSS nanocomposites exhibited good homogeneity in scanning electron microscopy and transmission electron microscopy observations. POSS modification increased the storage modulus and Young's modulus of the polyamides, slightly decreased their glass-transition temperatures from 312 to 305 °C, and significantly lowered their dielectric constants from 4.45 to 3.35. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4632,4643, 2006 [source]


    Fabrication and Luminescent Properties of Nd3+ -Doped Lu2O3 Transparent Ceramics by Pressureless Sintering

    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 10 2009
    Ding Zhou
    The fabrication of transparent Nd3+ ion-doped Lu2O3 ceramics is investigated by pressureless sintering under a flowing H2 atmosphere. The starting Nd-doped Lu2O3 nanocrystalline powder is synthesized by a modified coprecipitant processing using a NH4OH+NH4HCO3 mixed solution as the precipitant. The thermal decomposition behavior of the precipitate precursor is studied by thermogravimetric analysis and differential thermal analysis. After calcination at 1000°C for 2 h, monodispersed Nd3+:Lu2O3 powder is obtained with a primary particle size of about 40 nm and a specific surface area of 13.7 m2/g. Green compacts, free of additives, are formed from the as-synthesized powder by dry pressing followed by cold isostatic pressing. Highly transparent Nd3+:Lu2O3 ceramics are obtained after being sintered under a dry H2 atmosphere at 1880°C for 8 h. The linear optical transmittance of the polished transparent samples with a 1.4 mm thickness reaches 75.5% at the wavelength of 1080 nm. High-resolution transmission electron microscopy observations demonstrate a "clear" grain boundary between adjacent grains. The luminescent spectra showed that the absorption coefficient of the 3 at.% Nd-doped Lu2O3 ceramic at 807 nm reached 14 cm,1, while the emission cross section at 1079 nm was 6.5 × 10,20 cm2. [source]