Home About us Contact | |||
Microscopic Imaging (microscopic + imaging)
Selected AbstractsEnhanced Fluorescence Microscopic Imaging by Plasmonic Nanostructures: From a 1D Grating to a 2D Nanohole ArrayADVANCED FUNCTIONAL MATERIALS, Issue 6 2010Xiaoqiang Cui Abstract A two-dimensional (2D) plasmonic coupling nanostructure for enhanced fluorescence observation using a microscope is presented. The substrate contained periodically assembled nanohole arrays with a pitch of 400,nm and a depth of 25,nm. In comparison with one-dimensional (1D) gratings, this new substrate presented an excellent surface plasmon coupling ability to illuminate light from all directions. Under an optical microscope, an enhancement in the fluorescence intensity of up to 100 times compared with a plain glass slide was observed. The ability to markedly increase the fluorescence intensity means this technique has great potential for application in biodiagnostics, imaging, sensing, and photovoltaic cells. [source] Tailored Plasmonic Gratings for Enhanced Fluorescence Detection and Microscopic ImagingADVANCED FUNCTIONAL MATERIALS, Issue 4 2010Xiaoqiang Cui Abstract The ability to precisely control the pattern of metallic structures at the micro- and nanoscale for surface plasmon coupling has been demonstrated to be essential for signal enhancement in fields such as fluorescence and surface-enhanced Raman scattering. In the present study, a series of silver coated gratings with tailored duty ratio and depth and a periodical pitch of 400,nm are designed and implemented. The influence of the grating profile on plasmonic properties and the corresponding enhancement factor are investigated by angular scanning measurement of reflectivity and fluorescence intensity and by finite difference time domain simulation. The application of the substrate in the enhanced fluorescence imaging detection of labeled protein is also investigated. This substrate has a wide range of potential applications in areas including biodiagnostics, imaging, sensing, and photovoltaic cells. [source] Infrared Microscopic Imaging of Bone: Spatial Distribution of CO32,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 5 2001H. Ou-Yang Abstract This article describes a novel technology for quantitative determination of the spatial distribution of CO32, substitution in bone mineral using infrared (IR) imaging at ,6 ,m spatial resolution. This novel technology consists of an IR array detector of 64 × 64 elements mapped to a 400 ,m × 400 ,m spot at the focal plane of an IR microscope. During each scan, a complete IR spectrum is acquired from each element in the array. The variation of any IR parameter across the array may be mapped. In the current study, a linear relationship was observed between the band area or the peak height ratio of the CO32, v3 contour at 1415 cm,1 to the PO43, v1,v3 contour in a series of synthetic carbonated apatites. The correlation coefficient between the spectroscopically and analytically determined ratios (R2 = 0.989) attests to the practical utility of this IR area ratio for determination of bone CO32, levels. The relationship forms the basis for the determination of CO32, in tissue sections using IR imaging. In four images of trabecular bone the average CO32, levels were 5.95 wt% (2298 data points), 6.67% (2040 data points), 6.66% (1176 data points), and 6.73% (2256 data points) with an overall average of 6.38 ± 0.14% (7770 data points). The highest levels of CO32, were found at the edge of the trabeculae and immediately adjacent to the Haversian canal. Examination of parameters derived from the phosphate v1,v3 contour of the synthetic apatites revealed that the crystallinity/perfection of the hydroxyapatite (HA) crystals was diminished as CO32, levels increased. The methodology described will permit evaluation of the spatial distribution of CO32, levels in diseased and normal mineralized tissues. [source] Microscopic imaging of extended tissue volumesCLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 12 2004Ian LeGrice Summary 1.,Detailed information about three-dimensional structure is key to understanding biological function. 2.,Confocal laser microscopy has made it possible to reconstruct three-dimensional organization with exquisite resolution at cellular and subcellular levels. 3.,There have been few attempts to acquire large image volumes using the confocal laser scanning microscope. 4.,Previously, we have used manual techniques to construct extended volumes (several mm in extent, at 1.5 µm voxel size) of myocardial tissue. 5.,We are now developing equipment and efficient automated methods for acquiring extended morphometric databases using confocal laser scanning microscopy. [source] Isolation and partial purification of the Saccharomyces cerevisiae cytokinetic apparatus,CYTOSKELETON, Issue 1 2010Brian A. Young Abstract Cytokinesis is the process by which a cell physically divides in two at the conclusion of a cell cycle. In animal and fungal cells, this process is mediated by a conserved set of proteins including actin, type II myosin, IQGAP proteins, F-BAR proteins, and the septins. To facilitate biochemical and ultrastructural analysis of cytokinesis, we have isolated and partially purified the Saccharomyces cerevisiae cytokinetic apparatus. The isolated apparatus contains all components of the actomyosin ring for which we tested,actin, myosin heavy and light chain, and IQGAP,as well as septins and the cytokinetic F-BAR protein, Hof1p. We also present evidence indicating that the actomyosin rings associated with isolated cytokinetic apparati may be contractile in vitro, and show preliminary electron microscopic imaging of the cytokinetic apparatus. This first successful isolation of the cytokinetic apparatus from a genetically tractable organism promises to make possible a deeper understanding of cytokinesis. © 2009 Wiley-Liss, Inc. [source] Effect of Hormone Replacement Therapy on Bone Quality in Early Postmenopausal WomenJOURNAL OF BONE AND MINERAL RESEARCH, Issue 6 2003Ep Paschalis PhD Abstract HRT is an effective prophylaxis against postmenopausal bone loss. Infrared imaging of paired iliac crest biopsies obtained at baseline and after 2 years of HRT therapy demonstrate an effect on the mineral crystallinity and collagen cross-links that may affect bone quality. Several studies have demonstrated that hormonal replacement therapy (HRT) is an effective prophylaxis against postmenopausal bone loss, although the underlying mechanisms are still debated. Infrared spectroscopy has been used previously for analyzing bone mineral crystallinity and three-dimensional structures of collagen and other proteins. In the present study, the technique of Fourier transform infrared microscopic imaging (FTIRI) was used to investigate the effect of estrogen on bone quality (arbitrarily defined as mineral/matrix ratio, mineral crystallinity/maturity, and relative ratio of collagen cross-links [pyridinoline/deH-DHLNL]) at the ultrastructural level, in mineralized, thin tissue sections from double (before and after administration of HRT regimen; cyclic estrogen and progestogen [norethisterone acetate]) iliac crest biopsy specimens from 10 healthy, early postmenopausal women who were not on any medication with known influence on calcium metabolism. FTIRI allows the analysis of undemineralized thin tissue sections (each image analyzes a 400 × 400 ,m2 area with a spatial resolution of ,6.3 mm). For each bone quality variable considered, the after-treatment data exhibited an increase in the mean value, signifying definite changes in bone properties at the molecular level after HRT treatment. Furthermore, these findings are consistent with suppressed osteoclastic activity. [source] Quantitative X-ray projection microscopy: phase-contrast and multi-spectral imagingJOURNAL OF MICROSCOPY, Issue 2 2002S. C. Mayo Summary We outline a new approach to X-ray projection microscopy in a scanning electron microscope (SEM), which exploits phase contrast to boost the quality and information content of images. These developments have been made possible by the combination of a high-brightness field-emission gun (FEG)-based SEM, direct detection CCD technology and new phase retrieval algorithms. Using this approach we have been able to obtain spatial resolution of < 0.2 µm and have demonstrated novel features such as: (i) phase-contrast enhanced visibility of high spatial frequency image features (e.g. edges and boundaries) over a wide energy range; (ii) energy-resolved imaging to simultaneously produce multiple quasi-monochromatic images using broad-band polychromatic illumination; (iii) easy implementation of microtomography; (iv) rapid and robust phase/amplitude-retrieval algorithms to enable new real-time and quantitative modes of microscopic imaging. These algorithms can also be applied successfully to recover object,plane information from intermediate-field images, unlocking the potentially greater contrast and resolution of the intermediate-field regime. Widespread applications are envisaged for fields such as materials science, biological and biomedical research and microelectronics device inspection. Some illustrative examples are presented. The quantitative methods described here are also very relevant to projection microscopy using other sources of radiation, such as visible light and electrons. [source] In vivo high-resolution synchrotron radiation imaging of collagen-induced arthritis in a rodent modelJOURNAL OF SYNCHROTRON RADIATION, Issue 3 2010Chang-Hyuk Choi In vivo microstructures of the affected feet of collagen-induced arthritic (CIA) mice were examined using a high-resolution synchrotron radiation (SR) X-ray refraction technique with a polychromatic beam issued from a bending magnet. The CIA models were obtained from six-week-old DBA/1J mice that were immunized with bovine type II collagen and grouped as grades 0,3 according to a clinical scoring for the severity of arthritis. An X-ray shadow of a specimen was converted into a visual image on the surface of a CdWO4 scintillator that was magnified using a microscopic objective lens before being captured with a digital charge-coupled-device camera. Various changes in the joint microstructure, including cartilage destruction, periosteal born formation, articular bone thinning and erosion, marrow invasion by pannus progression, and widening joint space, were clearly identified at each level of arthritis severity with an equivalent pixel size of 2.7,µm. These high-resolution features of destruction in the CIA models have not previously been available from any other conventional imaging modalities except histological light microscopy. However, thickening of the synovial membrane was not resolved in composite images by the SR refraction imaging method. In conclusion, in vivo SR X-ray microscopic imaging may have potential as a diagnostic tool in small animals that does not require a histochemical preparation stage in examining microstructural changes in joints affected with arthritis. The findings from the SR images are comparable with standard histopathology findings. [source] A simple protocol for paraffin-embedded myelin sheath staining with osmium tetroxide for light microscope observationMICROSCOPY RESEARCH AND TECHNIQUE, Issue 7 2008Federica Di Scipio Abstract Experimental investigation of peripheral nerve fiber regeneration is attracting more and more attention among both basic and clinical researchers. Assessment of myelinated nerve fiber morphology is a pillar of peripheral nerve regeneration research. The gold standard for light microscopic imaging of myelinated nerve fibers is toluidine blue staining of resin-embedded semithin sections. However, many researchers are unaware that the dark staining of myelin sheaths typically produced by this procedure is due to osmium tetroxide postfixation and not due to toluidine blue. In this article, we describe a simple pre-embedding protocol for staining myelin sheaths in paraffin-embedded nerve specimens using osmium tetroxide. The method involves immersing the specimen in 2% osmium tetroxide for 2 h after paraformaldeyde fixation, followed by routine dehydration and paraffin embedding. Sections can then be observed directly under the microscope or counterstained using routine histological methods. Particularly good results were obtained with Masson's trichrome counterstain, which permits the imaging of connective structures in nerves that are not detectable in toluidine blue-stained resin sections. Finally, we describe a simple protocol for osmium etching of sections, which makes further immunohistochemical analysis possible on the same specimens. Taken together, our results suggest that the protocol described in this article is a valid alternative to the conventional resin embedding-based protocol: it is much cheaper, can be adopted by any histological laboratory, and allows immunohistochemical analysis to be conducted. Microsc. Res. Tech., 2008. © 2008 Wiley-Liss, Inc. [source] Antecedents of two-photon excitation laser scanning microscopyMICROSCOPY RESEARCH AND TECHNIQUE, Issue 1 2004Barry R. Masters Abstract In 1931, Maria Göppert-Mayer published her doctoral dissertation on the theory of two-photon quantum transitions (two-photon absorption and emission) in atoms. This report describes and analyzes the theoretical and experimental work on nonlinear optics, in particular two-photon excitation processes, that occurred between 1931 and the experimental implementation of two-photon excitation microscopy by the group of Webb in 1990. In addition to Maria Göppert-Mayer's theoretical work, the invention of the laser has a key role in the development of two-photon microscopy. Nonlinear effects were previously observed in different frequency domains (low-frequency electric and magnetic fields and magnetization), but the high electric field strength afforded by lasers was necessary to demonstrate many nonlinear effects in the optical frequency range. In 1978, the first high-resolution nonlinear microscope with depth resolution was described by the Oxford group. Sheppard and Kompfner published a study in Applied Optics describing microscopic imaging based on second-harmonic generation. In their report, they further proposed that other nonlinear optical effects, such as two-photon fluorescence, could also be applied. However, the developments in the field of nonlinear optical stalled due to a lack of a suitable laser source. This obstacle was removed with the advent of femtosecond lasers in the 1980s. In 1990, the seminal study of Denk, Strickler, and Webb on two-photon laser scanning fluorescence microscopy was published in Science. Their paper clearly demonstrated the capability of two-photon excitation microscopy for biology, and it served to convince a wide audience of scientists of the potential capability of the technique. Microsc. Res. Tech. 63:3,11, 2004. © 2003 Wiley-Liss, Inc. [source] Self-Assembly of an Alkylated Guanosine Derivative into Ordered Supramolecular Nanoribbons in Solution and on Solid SurfacesCHEMISTRY - A EUROPEAN JOURNAL, Issue 13 2007Stefano Lena Dr. Abstract We report on the synthesis and self-assembly of a guanosine derivative bearing an alkyloxy side group under different environmental conditions. This derivative was found to spontaneously form ordered supramolecular nanoribbons in which the individual nucleobases are interacting through H-bonds. In toluene and chloroform solutions the formation of gel-like liquid-crystalline phases was observed. Sub-molecularly resolved scanning tunneling microscopic imaging of monolayers physisorbed at the graphite,solution interface revealed highly ordered two-dimensional networks. The recorded intramolecular contrast can be ascribed to the electronic properties of the different moieties composing the molecule, as proven by quantum-chemical calculations. This self-assembly behavior is in excellent agreement with that of 5,- O -acylated guanosines, which are also characterized by a self-assembled motif of guanosines that resembles parallel ribbons. Therefore, for guanosine derivatives (without sterically demanding groups on the guanine base) the formation of supramolecular nanoribbons in solution, in the solid state, and on flat surfaces is universal. This result is truly important in view of the electronic properties of these supramolecular anisotropic architectures and thus for potential applications in the fields of nano- and opto-electronics. [source] |