Home About us Contact | |||
Microns
Kinds of Microns Terms modified by Microns Selected AbstractsPhase Relations Between ,-Tricalcium Phosphate and Hydroxyapatite with Manganese(II): Structural and Spectroscopic PropertiesEUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 7 2006Isaac Mayer Abstract The preparation of Mn-containing ,-tricalcium phosphate (,-TCP) samples was achieved in two ways: a) transformation of precipitated Mn-containing calcium hydroxyapatite (HA) to ,-TCP by heating at 1100 °C, and b) preparation by solid-state reaction of a mixture of CaCO3, (NH4)2HPO4, and Mn(NO3)2 at 1100 °C. Powder X-ray diffraction (XRD) analyses of the samples, obtained by both methods, show well-defined patterns with structural data of the rhombohedral R3c, ,-TCP phase. The calculated lattice constants are smaller than those known for ,-Ca3(PO4)2 because of substitution of Ca2+ by Mn2+. EPR spectroscopy indeed reveals that manganese is divalent in the samples. Apparently, the Ca(5) site in the ,-TCP structure is occupied by Mn2+. The distribution of Mn2+ between the ,-TCP and the HA phase in the case of preparation (b) was studied by EPR spectroscopy, and a pronounced preference for the former lattice was found. Micron- and submicron-sized crystals with visible faces were observed by TEM in the case of ,-TCP prepared by solid-state reaction, and large micron-sized, droplike-shaped crystals, sensitive to beam radiation, were found in the case of samples prepared by heating HA at elevated temperatures. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2006) [source] Temporally-resolved inkjet drop impaction on surfacesAICHE JOURNAL, Issue 10 2007Hongming Dong Abstract Impaction on smooth solid substrates of drops formed by the drop-on-demand (DOD) method was investigated over a wide range of impaction speeds (U0 = 2.21,12.2 m/s), surface contact angles (, = 6,107°), and drop diameters (D0 = 40.8,50.5 ,m). The experimental results were compared with several existing equations for predicting maximum spreading. The dimensionless time to reach maximum spreading ratio, scaled by D0/U0, ranged from 0.6 to 2.99, depending on Weber number and contact angle. Micron and millimeter drop impactions were compared, and the results indicate that scaling based on three dimensionless numbers (We, Re or Oh, and cos ,) is valid, but spreading ratios of millimeter drops are usually slightly larger during the whole process. The difference is ascribed mainly to the effect of gravity. © 2007 American Institute of Chemical Engineers AIChE J, 2007 [source] Ionized gas in E/S0 galaxies with dust lanesMONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2010Ido Finkelman ABSTRACT We report the results of multicolour observations of 30 E/S0 galaxies with dust lanes. For each galaxy we obtained broad-band images and narrow-band images using interference filters isolating the H,+[N ii] emission lines to derive the amount and morphology of dust and ionized gas. To improve the wavelength coverage we retrieved data from the Sloan Digital Sky Survey and Two Micron All Sky Survey and combined these with our data. Ionized gas is detected in 25 galaxies and shows in most cases a smooth morphology, although knots and filamentary structure are also observed in some objects. The extended gas distribution closely follows the dust structure, with a clear correlation between the mass of both components. An extinction law by the extragalactic dust in the dark lanes is derived and is used to estimate the dust content of the galaxies. The derived extinction law is used to correct the measured colours for intrinsic dust extinction and the data are fitted with a stellar population synthesis model. We find that the H, emission and colours of most objects are consistent with the presence of an ,old' stellar population (,10 Gyr) and a small fraction of a ,young' population (, 10,100 Myr). To check this we closely examine NGC 5363, for which archival Spitzer/Infrared Array Camera and Galaxy Evolution Explorer data are available, as a representative dust-lane E/S0 galaxy of the sample. [source] A fast hybrid algorithm for exoplanetary transit searchesMONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 2 2006A. Collier Cameron ABSTRACT We present a fast and efficient hybrid algorithm for selecting exoplanetary candidates from wide-field transit surveys. Our method is based on the widely used SysRem and Box Least-Squares (BLS) algorithms. Patterns of systematic error that are common to all stars on the frame are mapped and eliminated using the SysRem algorithm. The remaining systematic errors caused by spatially localized flat-fielding and other errors are quantified using a boxcar-smoothing method. We show that the dimensions of the search-parameter space can be reduced greatly by carrying out an initial BLS search on a coarse grid of reduced dimensions, followed by Newton,Raphson refinement of the transit parameters in the vicinity of the most significant solutions. We illustrate the method's operation by applying it to data from one field of the SuperWASP survey, comprising 2300 observations of 7840 stars brighter than V= 13.0. We identify 11 likely transit candidates. We reject stars that exhibit significant ellipsoidal variations caused indicative of a stellar-mass companion. We use colours and proper motions from the Two Micron All Sky Survey and USNO-B1.0 surveys to estimate the stellar parameters and the companion radius. We find that two stars showing unambiguous transit signals pass all these tests, and so qualify for detailed high-resolution spectroscopic follow-up. [source] Further 2MASS mapping of hot dust in planetary nebulaeMONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2006J. P. Phillips ABSTRACT We have used 2 Micron All Sky Survey (2MASS) mapping results to investigate the distribution of hot dust continua in 12 planetary nebulae (PNe). The nature of this emission is unclear, but it is possible that where the continuum is extended, as is the case for M 1-12 and NGC 40, then the grains concerned may be very small indeed. The absorption of individual photons by such grains may lead to sharp spikes in temperature, as has previously discussed for several other such outflows. Other sources (such as MaC 1-4, He 2-25, B1 2-1 and K 3-15) appear to be relatively compact, and the high temperatures observed are understandable in terms of more normal heating processes. It is possible that the grains in these cases are experiencing high radiant flux levels. Finally, it is noted that whilst the core of M 2-2 appears to show hot grain emission, this is less the case for its more extended envelope. The situation may, in this case, be similar to that of NGC 2346, in which much of the emission is located within an unresolved nucleus. Similarly, it is noted that in addition to hot dust and gas thermal continua, the emission in the interior of NGC 40 may be enhanced through rotational,vibrational transitions of H2, and/or the 2p3P0,2s3S transition of He i. [source] Transformations between the 2MASS, SDSS, and BVI photometric systems for late-type giantsASTRONOMISCHE NACHRICHTEN, Issue 8 2010E. Yaz Abstract We present colour transformations from Two Micron All Sky Survey (2MASS) photometric system to Johnson-Cousins system and to Sloan Digital Sky Survey (SDSS) system for late-type giants and vice versa. The giant star sample was formed using surface gravity constraints (2 < log g , 3) to Cayrel de Strobel et al.'s (2001) spectroscopic catalogue. 2MASS, SDSS and Johnson-Cousins photometric data was taken from Cutri et al. (2003), Ofek (2008), and van Leeuwen (2007), respectively. The final sample was refined applying the following steps: (1) the data were dereddened, (2) the sample stars selected are of the highest photometric quality. We give two-colour dependent transformations as a function of metallicity as well as independent of metallicity. The transformations provide absolute magnitudes and distance determinations which can be used in space density evaluations at relatively short distances where some or all of the SDSS magnitudes of late-type giants are saturated (© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Optical and infrared photometry of new very low-mass stars and brown dwarfs in the , Orionis clusterASTRONOMISCHE NACHRICHTEN, Issue 9 2004V. J. S. Béjar Abstract We present an RI photometric survey covering an area of 430 arcmin2 around the multiple star , Orionis. The observations were conducted with the 0.8 m IAC-80 Telescope at the Teide Observatory. The survey limiting R and I magnitudes are 22.5 and 21, and completeness magnitudes 21 and 20, respectively. We have selected 53 candidates from the I vs. R,I colour-magnitude diagram (I = 14,20) that follow the previously known photometric sequence of the cluster. Adopting an age of 2,4 Myr for the cluster, we find that these objects span a mass range from 0.35 M, to 0.015 M,. We have performed J -band photometry of 52 candidates and Ks photometry for 12 of them, with the result that 50 follow the expected infrared sequence for the cluster, thus confirming with great confidence that the majority of the candidates are bona fide members. JHKs photometry from the Two Micron All Sky Survey (2MASS) is available for 50 of the candidates and are in good agreement with our data. Out of 48 candidates, which have photometric accuracies better than 0.1 mag in all bands, only three appear to show near-infrared excesses. (© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Raman spectroscopic and X-ray investigation of stressed states in diamond-like carbon filmsCRYSTAL RESEARCH AND TECHNOLOGY, Issue 1-2 2005R. Krawietz Abstract The non-destructive characterization of intrinsic stress is very important to evaluate the reliability of devices based on diamond-like carbon (DLC) films. Whereas the only requirement for the X-ray diffraction method is a crystalline state of specimen, Raman spectroscopic stress analysis is restricted to materials showing intensive and sharp Raman peaks. On the other hand, Raman spectroscopy offers the possibility to measure stress profiles with lateral resolution of about 1 micron. The results of stress measurements in DLC films using both X-ray diffraction and Raman spectroscopy are found in very good correspondence. Mean stress in carbon films consisting of very small crystallites on silicon substrates has been determined by measuring and fitting the stress profiles in the substrate near artificial vertical film edges. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Electrohydrodynamic-mediated dielectrophoretic separation and transport based on asymmetric electrode pairsELECTROPHORESIS, Issue 24 2008E. Du Abstract This paper presents a system for continuous separation and transport of micron and submicron particles in fluidic environment based on dielectrophoretic fractionation in concert with AC electrothermal (AC ET)-induced fluidic pumping action. In this system, high frequency AC signals are used to energize asymmetric electrode pairs. AC ET-driven fluidic pumping is utilized as an alternative to the commonly used external pressure-driven fluid flow. Distinct collection sites for negative-dielectrophoretic and positive-dielectrophoretic particle populations are identified. The coupling effects of dielectrophoretic force and viscous drag from AC ET fluid flow on particle motions are investigated theoretically and numerically. We demonstrate that these two forces can be efficiently coupled to achieve continuous separation and transport of particle mixture in a fluidic medium when the dielectric properties of the particles and the fluidic environment are different. The combination of dielectrophoretic separation and AC ET pumping function provides a promising approach to further miniaturize and integrate these mechanisms into lab-on-chip devices. [source] Assessing the fate and effects of nano aluminum oxide in the terrestrial earthworm, Eisenia fetidaENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 7 2010Jessica G. Coleman Abstract Nano-sized aluminum is currently being used by the military and commercial industries in many applications including coatings, thermites, and propellants. Due to the potential for wide dispersal in soil systems, we chose to investigate the fate and effects of nano-sized aluminum oxide (Al2O3), the oxidized form of nano aluminum, in a terrestrial organism. The toxicity and bioaccumulation potential of micron-sized (50,200,µm, nominal) and nano-sized (11,nm, nominal) Al2O3 was comparatively assessed through acute and subchronic bioassays using the terrestrial earthworm, Eisenia fetida. Subchronic (28-d) studies were performed exposing E. fetida to nano- and micron-sized Al2O3 -spiked soils to assess the effects of long-term exposure. No mortality occurred in subchronic exposures, although reproduction decreased at ,3,000,mg/kg nano-sized Al2O3 treatments, with higher aluminum body burdens observed at 100 and 300,mg/kg; no reproductive effects were observed in the micron-sized Al2O3 treatments. In addition to toxicity and bioaccumulation bioassays, an acute (48-h) behavioral bioassay was conducted utilizing a soil avoidance wheel in which E. fetida were given a choice of habitat between control, nano-, or micron-sized Al2O3 amended soils. In the soil avoidance bioassays, E. fetida exhibited avoidance behavior toward the highest concentrations of micron- and nano-sized Al2O3 (>5,000,mg/kg) relative to control soils. Results of the present study indicate that nano-sized Al2O3 may impact reproduction and behavior of E. fetida, although at high levels unlikely to be found in the environment. Environ. Toxicol. Chem. 2010;29:1575,1580. © 2010 SETAC [source] Abiotic,biotic controls on the origin and development of spicular sinter: in situ growth experiments, Champagne Pool, Waiotapu, New ZealandGEOBIOLOGY, Issue 2 2005K. M. HANDLEY Abiotic,biotic mechanisms of microstromatolitic spicular sinter (geyseritic) initiation and development were elucidated by in situ growth experiments at Champagne Pool (75 °C, pH 5.5). Siliceous sinter formed subaerially on glass slides placed along the margin of the hot spring. Environment,silica,microbe interactions were revealed by periodic collections of incremental sinter growth that formed under a range of environmental conditions including quiescence vs. wave turbulence, and wind,evaporation vs. steam,condensation. Sinter surfaces were intermittently colonized by voluminous networks of filamentous micro-organisms, with submicron diameters, that provided an extensive surface area for silica deposition. The subaerial distribution of sinter and its textures reflected micron- to centimetre-scale differences in environmental conditions, particularly relating to the balance between wave-supplied dissolved silica and its precipitation, forced by cooling and evaporation. A continuum of sinter textures formed, representing rates of silica precipitation that either out-paced biofilm growth or regulated the structural development of biofilms, and hence also the nature of microbially templated sinter. Massive laminae of porous, filamentous-network sinter and/or fenestrae (up to 10's of microns in thickness and diameter) formed at relatively low rates of silica deposition (approximately 0.2 mg slide,1 day,1). At high rates (>1.9 mg slide,1 day,1), densely packed, granular or nonporous sinter formed, with filament networks disappearing into the siliceous matrix and becoming imperceptible under scanning electron microscopy (SEM). Furthermore, spicules were nucleated by filamentous microcolonies, where their discrete conical morphologies were preserved by accretion of thin sinter laminae. Microstromatolitic spicular growth ensued at fluctuating low to high rates of silica precipitation. Greater apical sinter build-up, and hence upward polarity, resulted from focused microbial recolonization and progressively greater subaerial exposure at microspicule tips. The biogenic origin of spicular sinter at Champagne Pool clearly demonstrates that micron-scale biofilms, displaying self-organization patterns common to both biofilms and microbial mats, can be an essential factor in shaping characteristic centimetre-scale sinter macrostructures. These findings suggest that a biogenic origin for geyserites elsewhere should also be considered. Moreover, results corroborate the supposition that microbially generated surface roughness may be significant for stromatolite morphogenesis in cryptic Precambrian carbonates. [source] Numerical algorithms for modelling electrodeposition: Tracking the deposition front under forced convection from megasonic agitationINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 3 2010Michael Hughes Abstract Electrodeposition is a widely used technique for the fabrication of high aspect ratio microstructures. In recent years, much research has been focused within this area aiming to understand the physics behind the filling of high aspect ratio vias and trenches on substrates and in particular how they can be made without the formation of voids in the deposited material. This paper reports on the fundamental work towards the advancement of numerical algorithms that can predict the electrodeposition process in micron scaled features. Two different numerical approaches have been developed, which capture the motion of the deposition interface and 2-D simulations are presented for both methods under two deposition regimes: those where surface kinetics is governed by Ohm's law and the Butler,Volmer equation, respectively. In the last part of this paper the modelling of acoustic forces and their subsequent impact on the deposition profile through convection is examined. Copyright © 2009 John Wiley & Sons, Ltd. [source] Prediction of jet flows in the supersonic nozzle and diffuserINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 10-11 2005Yi Liu Abstract The authors' recently-developed code for a needle-free powdered vaccine delivery device, the epidermal powdered inject system (EPI), is summarized in this paper. The behaviour of supersonic jet flows, which accelerate micron sized powdered vaccines to penetrate human skin or mucosal tissue, is therefore of great importance. A well-established modified implicit flux vector splitting (MIFVS) solver for the Navier,Stokes equations is extended to study numerically the transient supersonic jet flows of interest. A low Reynolds number k,, turbulence model, with the compressibility effect considered, is integrated into MIFVS solver to predict the turbulent structures and interactions with inherent shock systems. The results for the NASA validation case NPARC, Venturi and contoured shock tube (CST) of the EPI system are discussed. Copyright © 2005 John Wiley & Sons, Ltd. [source] Microbeam small-angle scattering experiments and their combination with microdiffractionJOURNAL OF APPLIED CRYSTALLOGRAPHY, Issue 3-1 2000C. Riekel The brilliance of undulator X-ray sources can be used to develop microfocusing optics for wide-angle (WAXS) and small-angle (SAXS) X-ray scattering. At the ESRF microfocus beamline, a beam size of 10 ,m is obtained by a pinhole collimating system coupled to a double focusing mirror. This allows resolving the first order of collagen (67 nm). Glass capillary optics provides a beam size close to one micron, however, with a more limited resolution. A high-resolution CCD detector allows combined SAXS/WAXS experiments for one detector setting. [source] Synthesis of morphologically different, metal absorbing aniline-formaldehyde polymers including micron-sized sphere using simple alcohols as morphology modifierJOURNAL OF APPLIED POLYMER SCIENCE, Issue 2 2008Rik Rani Koner Abstract Aniline-formaldehyde condensate (AFC) is an amine functional group containing polymer. The sticky resinous nature of the polymer limits its usefulness. Synthesis of AFC in presence of methanol, isopropanol, t -butanol, n -octanol or glycerine formed solid cakes instead of resinous material. The scanning electron microscopic (SEM) picture of the polymer synthesized in presence of t -butanol shows the formation of micron sized spheroids while the presence of methanol, isopropanol, n -octanol and glycerine leads to amorphous polymer. The polymers were characterized with IR, MALDI-TOF mass and Energy Dispersive X-ray (EDAX) analysis. To probe the accessibility of the amine functional groups by external reagents and as an application, metal removal property of the polymers were tested using aqueous Cr(VI) solution. All the polymers remove Cr(VI) efficiently at pH 3 with extent of metal removal depends on their morphology. Polymer synthesized in presence of isopropanol removes , 66% Cr(VI) removal from an initial concentration of 9 mg/L. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 [source] Vesicle traffic through intercellular bridges in DU 145 human prostate cancer cellsJOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 3 2004Cristina Vidulescu Abstract We detected cell-to-cell communication via intercellular bridges in DU 145 human prostate cancer cells by fluorescence microscopy. Since DU 145 cells have deficient gap junctions, intercellular bridges may have a prominent role in the transfer of chemical signals between these cells. In culture, DU 145 cells are contiguous over several cell diameters through filopodial extensions, and directly communicate with adjacent cells across intercellular bridges. These structures range from 100 nm to 5 ,m in diameter, and from a few microns to at least 50,100 ,m in length. Time-lapse imagery revealed that (1) filopodia rapidly move at a rate of microns per minute to contact neighboring cells and (2) intercellular bridges are conduits for transport of membrane vesicles (1,3 ,m in diameter) between adjacent cells. Immunofluorescence detected alpha-tubulin in intercellular bridges and filopodia, indicative of microtubule bundles, greater than a micron in diameter. The functional meaning, interrelationship of these membrane extensions are discussed, along with the significance of these findings for other culture systems such as stem cells. Potential applications of this work include the development of anticancer therapies that target intercellular communication and controlling formation of cancer spheroids for drug testing. [source] VISCOUS PROPERTIES OF TARO FLOUR EXTRUDED WITH WHEY PROTEINS TO SIMULATE WEANING FOODS,JOURNAL OF FOOD PROCESSING AND PRESERVATION, Issue 3 2002C. I. ONWULATA Taro flour, derived from the corm of Colocasia Esculenta cv. Lehua, a root tuber grown in the tropical regions of the world, was extruded with whey protein concentrate (WPC), whey protein isolate (WPI) or lactalbumin (LAC), to derive blends containing 20% protein, simulating the protein content of some weaning foods. Taro flour is unique because of its extremely small particle size (1,5 micron) and high mucilage or gum content, making it a possible replacement for corn or wheat starch in weaning foods. Extrusion processing temperatures were from 100 to 130C and moisture of the feed blends was held constant at 18%. The extrudates were pulverized, made into powders, and rehydrated to make a paste. Viscosities of the feed blends before extrusion and the pastes made from the extrudates were determined using a Rapid Visco Analyzer (RVA) to determine peak, final, and breakdown viscosities. Water solubility and absorption indices were also determined. Extrudates made from taro containing whey products expanded more than taro alone; were easier to grind into powders; and rehydrated readily in water to form pastes. Before extrusion, the peak viscosities of the blends were 5000, 2600, 1600, 1600 cP for taro flour, taro with WPI, taro with WPC, or taro with LAC, respectively. After extrusion cooking, the viscosities for taro flour, taro with WPI, taro with WPC, or taro with LAC were 110, 65, 70 or 90 cP, respectively. Taro extrudates without protein absorbed the most water, and were more soluble than products containing whey proteins or LAC. The addition of whey proteins reduced peak viscosities, but WPI and taro pastes were characteristic of weaning foods. Both extrusion cooking and the [source] Deagglomeration of nanoparticle aggregates via rapid expansion of supercritical or high-pressure suspensionsAICHE JOURNAL, Issue 11 2009Daniel To Abstract Deagglomeration of suspensions of alumina and titania nanopowders (i.e., nanoparticle aggregates) via rapid expansion of supercritical suspensions (RESS) or high-pressure suspensions (REHPS) was studied. The size distribution of fragmented nanopowders was characterized by online Scanning Mobility Particle Spectrometer (SMPS) and Aerodynamic Particle Sizer (APS), and by offline Scanning Electron Microscopy (SEM). SMPS and SEM measurements indicate that the average agglomerate sizes were well below 1 ,m, consistent with the length scales observed in our complementary RESS/REHPS mixing experiments using alumina and silica nanopowders. The APS measurements, on the other hand, were affected by reagglomeration during sampling and yielded an agglomerate size range of 1 to 3 ,m. Analysis of the RESS/REHPS process through compressible flow models revealed that both the shear stress in the nozzle and the subsequent impact of the agglomerates with the Mach disc in the free expansion region can lead to micron or sub-micron level deagglomeration. © 2009 American Institute of Chemical Engineers AIChE J, 2009 [source] Microstructure-fiber frequency convertersLASER PHYSICS LETTERS, Issue 5 2004A. M. Zheltikov Abstract Microstructure fibers with multiple micron and submicron fused silica waveguide channels are shown to be ideally suited for highly efficient anti-Stokes frequency conversion. These fibers are capable of generating ultrashort pulses of frequency-tunable radiation with controlled chirp, allowing the creation of new sources of tunable radiation for applications in spectroscopy, photochemistry, optical metrology, photobiology, and biomedicine. (© 2004 by ASTRO, Ltd. Published exclusively by WILEY-VCH Verlag GmbH & Co. KGaA) [source] Organic matter from comet 81P/Wild 2, IDPs, and carbonaceous meteorites; similarities and differencesMETEORITICS & PLANETARY SCIENCE, Issue 10 2009S. Wirick Sections were analyzed using a scanning transmission X-ray microscope (SXTM) and carbon X-ray absorption near edge structure (XANES) spectra were collected. We compared the carbon XANES spectra of these Wild 2 samples with a database of spectra on thirty-four interplanetary dust particles (IDPs) and with several meteorites. Two of the particles analyzed are iron sulfides and there is evidence that an aliphatic compound associated with these particles can survive high temperatures. An iron sulfide from an IDP demonstrates the same phenomenon. Another, mostly carbon free containing particle radiation damaged, something we have not observed in any IDPs we have analyzed or any indigenous organic matter from the carbonaceous meteorites, Tagish Lake, Orgueil, Bells and Murchison. The carbonaceous material associated with this particle showed no mass loss during the initial analysis but chemically changed over a period of two months. The carbon XANES spectra of the other four particles varied more than spectra from IDPs and indigenous organic matter from meteorites. Comparison of the carbon XANES spectra from these particles with 1. the carbon XANES spectra from thirty-four IDPs (<15 micron in size) and 2. the carbon XANES spectra from carbonaceous material from the Tagish Lake, Orgueil, Bells, and Murchison meteorites show that 81P/Wild 2 carbon XANES spectra are more similar to IDP carbon XANES spectra then to the carbon XANES spectra of meteorites. [source] Mineralogy, petrology, and thermal evolution of the Benton LL6 chondriteMETEORITICS & PLANETARY SCIENCE, Issue S7 2003Erin L. WALTON Internally, the meteorite comprises light-colored, subangular to subrounded clasts embedded in a dark grey-colored matrix. Clasts comprise the same mineral phases as the matrix, as well as chondrules and larger (50,100 ,m) single mineral grains (mainly olivine and orthopyroxene). Composite (polyphase) clasts can be several millimeters in length. Numerous examples of post-brecciation and post-annealing shearing and displacement at the micron to millimeter scale occur in the form of shock veins. Benton is a shock stage S3 chondrite, which experienced shock pressures on the order of 15,20 GPa, with an estimated post-shock temperature increase of 100,150°C. Benton's history comprises a sequence of events as follows: 1) chondrule formation and initial assembly; 2) brecciation; 3) thermal metamorphism; and 4) shock veining. Events (2) and (4) can be equated with distinct impact events, the former representing bombardment of target material that remained in situ or collisionally fragmented during metamorphism, and then gravitationally reassembled, the latter probably with release from the source body to yield a meteorite. Thermal metamorphism post-dates brecciation. The mean equilibration temperature recorded in the Benton LL6 chondrite is 890°C, obtained using the two pyroxene geothermometer. [source] Wide-range length metrology by dual-imaging-unit atomic force microscope based on porous aluminaMICROSCOPY RESEARCH AND TECHNIQUE, Issue 3 2004Dongxian Zhang Abstract A new dual-imaging-unit atomic force microscope (DIU-AFM) was developed for wide-range length metrology. In the DIU-AFM, two AFM units were combined, one as a reference unit, and the other a test one. Their probes with Z piezo elements and tips were horizontally set in parallel at the same height to reduce errors due to geometric asymmetry. An XY scanner was attached to an XY block that was able to move in the X direction with a step of about 500 nm. A standard porous alumina film was employed as the reference sample. Both reference sample and test sample were installed at the center of the XY scanner on the same surface and were simultaneously imaged. The two images had the same lateral size, and thus the length of the test sample image could be accurately measured by counting the number of periodic features of the reference one. The XY block together with the XY scanner were next moved in the X direction for about 1.5 ,m and a second pair of reference and test images were obtained by activating the scanner. In this way, a series of pairs of images were acquired and could be spliced into two wide-range reference and test images, respectively. Again, the two spliced images were of the same size and the length of test image was measured based on the reference one. This article presents a discussion about the structure and control of the DIU-AFM system. Some experiments were carried out on the system to demonstrate the method of length calculation and measurement. Experiments show a satisfactory result of wide-range length metrology based on the hexagonal features of the porous alumina with a periodic length of several tens of nanometers. Using this method the DIU-AFM is capable of realizing nanometer-order accuracy length metrology when covering a wide range from micron to several hundreds of microns, or even up to millimeter order. Microsc. Res. Tech. 64:223,227, 2004. © 2004 Wiley-Liss, Inc. [source] Determination of Size Distributions of Concentrated Polymer Particles Embedded in a Solid Polymer MatrixPARTICLE & PARTICLE SYSTEMS CHARACTERIZATION, Issue 1 2008Ezequiel R. Soulé Abstract In this work we present the results obtained from the size characterization of polymer particles embedded in a solid polymer matrix using Static Light Scattering (SLS) and Scanning Electron Microscopy (SEM). The analyzed samples are the result of the solution polymerization of isobornyl methacrylate (IBoMA) in polyisobutylene (PIB) at complete conversion. Induced by polymerization, the system undergoes phase separation. As a result, spherical micron sized particles rich in PIB are formed. At the end of the polymerization, the particles become trapped in a solid polymer matrix rich in Poly-IBoMA. Size, concentration, and refractive index, make the resulting particle system scatter light under the Rayleigh-Debye-Gans (RDG) regime with interparticle interference. For Light Scattering (LS) characterization the samples are measured with a Flat Cell Static Light Scattering (FCSLS) apparatus, in which the reaction takes place. The resulting SLS spectra are analyzed using the Percus-Yevick approximation to model the interference effects. The local monodisperse approximation is used to consider polydispersity in the particle sizes. The estimated particle size distributions agree well with the measurements from SEM. In this work a concentrated particle system that naturally scatters light according to the RDG regime has been fully characterized in terms of its particle size distribution. This work, against the opinion of other authors, shows the feasibility of measuring still particles using a one dimensional array of light detectors. [source] Positron annihilation characteristics in UO2: for lattice and vacancy defects induced by electron irradiationPHYSICA STATUS SOLIDI (C) - CURRENT TOPICS IN SOLID STATE PHYSICS, Issue 10 2007M.-F. Barthe Abstract In this work both 22Na based positron lifetime spectroscopy (PALS) and slow positron beam based Doppler annihilation-ray broadening spectrometry (SPBDB) have been used to characterize respectively the bulk and the first micron under the surface of sintered UO2 disks that have been polished and annealed at high temperature (1700 °C/24 h/ArH2). Results show the presence of negative ions that are tentatively identified to negatively charged oxygen atoms located in interstitial sites. The positron annihilation characteristics in the UO2 lattice have been determined and are equal to SL(UO2) = 0.371(5), WL(UO2) = 0.078(7), ,L(UO2) = 169 ± 1 ps. Such disks have been irradiated at room temperature with electrons and , particles at different fluences. After irradiation SPBDB and PALS measurements show the formation of U-related vacancy defects after a 2.5 MeV electrons irradiation whereas no defects are detected for an irradiation at 1 MeV. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Impact desolvation of electrosprayed microdroplets , a new ionization method for mass spectrometry of large biomoleculesRAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 21 2001Sergei A. Aksyonov Impact desolvation of electrosprayed microdroplets (IDEM) is a new method for producing gas-phase ions of large biomolecules. Analytes are dissolved in an electrolyte solution which is electrosprayed in vacuum, producing highly charged micron and sub-micron sized droplets (microdroplets). These microdroplets are accelerated through potential differences ,5,,,10,kV to velocities of several km/s and allowed to impact a target surface. The energetic impacts vaporize the droplets and release desolvated gas-phase ions of the analyte molecules. Oligonucleotides (2- to 12-mer) and peptides (bradykinin, neurotensin) yield singly and doubly charged molecular ions with no detectable fragmentation. Because the extent of multiple charging is significantly less than in atmospheric pressure electrospray ionization, and the method produces ions largely free of adducts from solutions of high ionic strength, IDEM has some promise as a method for coupling to liquid chromatographic techniques and for mixture analysis. Ions are produced in vacuum at a flat equipotential surface, potentially allowing efficient ion extraction. Copyright © 2001 John Wiley & Sons, Ltd. [source] The Granada workshop on High Redshift Radio Galaxies: An overviewASTRONOMISCHE NACHRICHTEN, Issue 2-3 2006H. J. A. Röttgering Abstract The Granada workshop on High Redshift Radio Galaxies (HzRGs) gave an excellent overview of the progress that has been made in this field during the last 3 years. Here we briefly review some of the results, with an emphasis on what studies of HzRGs can teach us about the formation and evolution of massive galaxies, clusters and active galactic nuclei (AGN). Of great relevance for this workshop are scenarios that describe certain aspects of the evolution of radio galaxies, including (i) the sequence of events after merging of galaxies that ultimately lead to extended powerful radio sources and (ii) the mass assembly and virialization of the hosting massive galaxies and their associated (proto-)clusters. Furthermore, I briefly discuss two projects that are important for a further understanding of AGN and high redshift radio galaxies. First, using the MIDI instrument mounted on the VLT Interferometer, the dusty tori of nearby AGN can be studied in the range of 8,13 micron at high angular resolution. The first result on the nearby AGN NGC 1068 as presented by Jaffe et al. (2004) indicated the presence of a hot (T > 800 K), compact (,1 pc) component, possible identified with the base of the jet and a warm (270 K), well-resolved (3 × 4 pc) component associated with the alleged torus. Second, LOFAR is a new low frequency radio telescope that is currently being build in the Netherlands and is expected to be operational in 2008. With 50 stations spread over an area of 100 km in diameter, its resolution and sensitivity will be unprecedented in the frequency range 10,240 MHz. LOFAR will be a unique instrument that will impact a broad range of astrophysical topics varying from the epoch of reionisation, to gamma ray bursts and cosmic rays. Surveys with LOFAR will be of paramount importance for studies of HzRGs: It will enable (i) defining samples of radio galaxies with redshifts higher than 6, (ii) observations of starbursting galaxies in proto-clusters, and (iii) mapping out the low-frequency radio emission of virtually all northern radio-loud AGN in revolutionary detail. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Mixing in Sub-micron DuctsCHEMICAL ENGINEERING & TECHNOLOGY (CET), Issue 3 2004E.B. Nauman Abstract This paper considers a class of fluidic devices, anticipated to become important in the near future, where characteristic channel dimensions are in the range 0.1 to 1.0 microns. Typical current applications of microfluidics have device sizes of 10 to 100 micron, this is sufficiently small to force laminar flow but not so small that molecular diffusion is a dominant factor. In the smaller devices contemplated here, diffusion is important and existing mixing strategies and correlations are no longer applicable. Novel results and interesting complexities are discussed for reactive, single and two phase flows in sub-micron channels. [source] 4415: Biochemical methods and X-ray based imaging strategies to evaluate retinal glucose metabolismACTA OPHTHALMOLOGICA, Issue 2010C POITRY-YAMATEArticle first published online: 23 SEP 2010 Purpose Evaluating the coordinated energy metabolism between neurons and glia in situ as a means to evaluate retinal glucose metabolism and function. Methods The imaging of metals conjugated to sugar substrates or metals linked to compounds that affect glycolysis were detected using synchrotron-based low and high energy x-ray fluorescence imaging. X-ray fluorescence maps with <1 micron resolution were placed in a morphological context using simultaneously acquired transmission images of the preparation. Spectrophotometric enzymatic microassays with high selectivity and sensitivity were performed to confirm the intracellular incorporation and metabolism of the delivered substances. Results In the dark-adapted rat retina, glucose transport and phosphorylation were specifically localized to the Müller glia in situ and an activated glycolysis was not measurable in neurons. Glial glucose metabolism was moreover coordinated with excitatory synaptic transmission in the mid to outer retina. Conclusion Given that oxygen metabolism predominates in neurons and that oxidative metabolism is fuelled by glucose metabolism, fuel transport obligatorily occurs from glia to neurons in intact healthy retina. Combining x-ray techniques with micron to submicron resolution and biochemical microassays with nM sensitivity offers: (1) a unique experimental strategy to evaluate retinal and cerebral energy metabolism and compartmentation at the cellular level in situ; and (2) is important to the interpretation of images using in vivo functional imaging techniques in the clinic. [source] Prospects for diffusion enhancement of signal and resolution in magnetic resonance microscopyCONCEPTS IN MAGNETIC RESONANCE, Issue 2 2003Charles H. Pennington Abstract The prospects for and practical requirements of the "diffusion enhancement of signal and resolution" (DESIRE) scheme proposed by Lauterbur as a method to enhance the sensitivity, spatial resolution, and contrast in magnetic resonance (MR) microscopy and localized MR spectroscopy is assessed. The method, which still has not been implemented, promises signal enhancements of 1,2 orders of magnitude in imaging or localized spectroscopy on the scale of ,10 microns and requires magnetic field gradient strengths (,10 T/m) that are not unreasonable. I emphasize the development of an understanding of the physical principles involved in this unfamiliar, "real-space" imaging method. © 2003 Wiley Periodicals, Inc. Concepts Magn Reson Part A 19A: 71,79, 2003. [source] A Comparison of Four Mohs Tissue Preparation Methods Using Porcine SkinDERMATOLOGIC SURGERY, Issue 9 2010FRCPC, WILLIAM LEAR MD OBJECTIVE Mohs surgery relies on high-quality, rapid tissue preparation and processing. This study evaluated four currently performed tissue preparation and processing methods for speed of processing and depth of cut into the tissue block to achieve a complete high-quality section. METHODS The following four methods were tested: cryoEMBEDDER, float, heat sink, and slide. Standardized specimens of porcine skin were used to ensure uniformity. We measured the time required for a technician to flatten, embed, and cut to the first complete section of each specimen. Additionally, we measured the depth in microns required to cut into an embedded specimen to achieve a complete section. RESULTS There were advantages and disadvantages of each method, and our findings suggest that the heat sink and float methods are more time efficient but that the slide and cryoEMBEDDER methods require less cutting into the specimen to obtain a complete section. The cryoEMBEDDER device used in this study was loaned by cryoEMBEDDER (Salt Lake City, Utah). [source] |