Microelectrodes

Distribution by Scientific Domains
Distribution within Life Sciences

Kinds of Microelectrodes

  • ion-selective microelectrode

  • Terms modified by Microelectrodes

  • microelectrode array
  • microelectrode recording
  • microelectrode techniques

  • Selected Abstracts


    Microdimensional Polyaniline: Fabrication and Characterization of Dynamics of Charge Propagation at Microdisk Electrodes

    ELECTROANALYSIS, Issue 17 2004
    Karolina Caban
    Abstract We describe fabrication of microdimensional polyanilne films in a controlled manner by voltammetric potential cycling or controlled potential electrolysis on platinum microdisk electrodes. The film grows in a form of hemispherical microdeposits, and its size largely exceeds the size of a Pt microdisk. Consequently, the film covers both the Pt substrate as well as the surrounding glass seal. Since the adhering polyaniline layer is conducting, the latter situation may lead to an increase in the effective electrode surface area. The lateral growth of polyaniline films outside the microdisk has also been demonstrated by performing diagnostic voltammetric experiments with use of a double microdisk set-up in which independent polarization of each disk is feasible. Microelectrode-based chronocoulometry, that involves an uncomplicated well-defined reduction potential step starting from the emeraldine (conducting) form and ending at leucoemeraldine (nonconducting) form, yields (upon application of a sufficiently short pulse) a well-defined linear response of charge versus square root of time that is consistent with the linear effective diffusion as the predominant charge propagation mechanism. When describing the system kinetics in terms of the effective (apparent) diffusion coefficient, we expect this parameter to be on the level of 10,8,cm2 s,1 or lower. The relative changes in dynamics of charge transport are discussed with respect to the polyaniline film loading, the size of microdisk electrode, expansion of the active electrode area, and the choice of electrolyte (strong acid) anion. The results are consistent with the view that when Pt microelectrode is modified with PANI deposit exceeding the size of the microdisk substrate, it behaves in a way as if its surface area is effectively much larger than the geometric area of Pt microdisk. [source]


    Electrochemical Behavior and Detection of Dopamine and Ascorbic Acid at an Iron(II)tetrasulfophthalocyanine Modified Carbon Paste Microelectrode

    ELECTROANALYSIS, Issue 10 2003
    Joshua Oni
    Abstract In this article the electrocatalytic behavior of an iron(II)tetrasulfophthalocyanine modified carbon paste microelectrode for the oxidation of dopamine (DA) and ascorbic acid (AA) is described. Although the oxidation potential of ascorbic acid is shifted by over 100,mV to more positive potentials, no peak separation could be obtained. This can be explained by the immediate homogeneous reduction of the oxidation product of dopamine by ascorbic acid in solution. However, this reaction induces a shift of the half-wave potential as a function of ratio of concentration of dopamine to ascorbic acid (cDA/cAA). Therefore it was possible to determine the cAA and cDA from this potential shift and the experimental peak current. Detection limits of 4.5±0.2×10,7 and 7.5±0.5×10,7,mol,L,1 were obtained respectively for dopamine and ascorbic acid for cDA/cAA>0.01. [source]


    Spontaneous Pulmonary Vein Firing in Man: Relationship to Tachycardia-Pause Early Afterdepolarizations and Triggered Arrhythmia in Canine Pulmonary Veins In Vitro

    JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 10 2007
    EUGENE PATTERSON Ph.D.
    Introduction: Rapid firing originating within pulmonary veins (PVs) initiates atrial fibrillation (AF). The following studies were performed to evaluate spontaneous PV firing in patients with AF to distinguish focal versus reentrant mechanisms. Methods: Intracardiac recordings were obtained in 18 patients demonstrating paroxysmal AF. Microelectrode (ME) recordings were obtained from superfused canine PV sleeves (N = 48). Results: Spontaneous PV firing (566 ± 16 bpm; 127 ± 6 ms cycle length) giving rise to AF (52 episodes) was observed. Tachycardia-pause initiation was present in 132 of 200 episodes of rapid PV firing and 34 of 52 AF episodes. The pause cycle length preceding PV firing was 1,039 ± 86 ms following tachycardia (420 ± 40 ms cycle length). The remaining episodes were initiated following a 702 ± 32 ms pause during sinus rhythm (588 ± 63 ms). Spontaneous firing recorded with a multipolar mapping catheter did not detect electrical activity bridging the diastolic interval between the initial ectopic and preceding post-pause sinus beat. Tachycardia-pause initiated PV firing (138 ± 7 ms coupling interval) in patients correlated with tachycardia-pause enhanced isometric force, early afterdepolarization (EAD) amplitude, and triggered firing within canine PVs. Rapid firing (1,172 ± 134 bpm; 51 ± 8 ms cycle length) following an abbreviated coupling interval (69 ± 12 ms) was initiated in 13 of 18 canine PVs following tachycardia-pause pacing during norepinephrine + acetylcholine superfusion. Stimulation selectively activating local autonomic nerve terminals facilitated tachycardia-pause triggered firing in canine PVs (5 of 15 vs 0 of 15; P < 0.05). Conclusions: The studies demonstrate (1) tachycardia-pause initiation of rapid, short-coupled PV firing in AF patients and (2) tachycardia-pause facilitation of isometric force, EAD formation, and autonomic-dependent triggered firing within canine PVs, suggestive of a common arrhythmia mechanism. [source]


    Monitoring in Real Time with a Microelectrode the Release of Reactive Oxygen and Nitrogen Species by a Single Macrophage Stimulated by its Membrane Mechanical Depolarization

    CHEMBIOCHEM, Issue 4 2006
    Christian Amatore Prof.
    Abstract Macrophages are key cells of the immune system. During phagocytosis, the macrophage engulfs a foreign bacterium, virus, or particle into a vacuole, the phagosome, wherein oxidants are produced to neutralize and decompose the threatening element. These oxidants derive from in situ production of superoxide and nitric oxide by specific enzymes. However, the chemical nature and sequence of release of these compounds is far from being completely determined. The aim of the present work was to study the fundamental mechanism of oxidant release by macrophages at the level of a single cell, in real time and quantitatively. The tip of a microelectrode was positioned at a micrometric distance from a macrophage in a culture to measure oxidative-burst release by the cell when it was submitted to physical stimulation. The ensuing release of electroactive reactive oxygen and nitrogen species was detected by amperometry and the exact nature of the compounds was characterized through comparison with in vitro electrochemical oxidation of H2O2, ONOO,, NO., and NO2, solutions. These results enabled the calculation of time variations of emission flux for each species and the reconstruction of the original flux of production of primary species, O2., and NO., by the macrophage. [source]


    Monitoring of Anti Cancer Drug Letrozole by Fast Fourier Transform Continuous Cyclic Voltammetry at Gold Microelectrode

    CHINESE JOURNAL OF CHEMISTRY, Issue 7 2010
    Parviz Norouzi
    Abstract A continuous cyclic voltammetric study of letrozole at gold microelectrode was carried out. The drug in phosphate buffer (pH 2.0) is adsorbed at ,200 mV, giving rise to change in the current of well-defined oxidation peak of gold in the flow injection system. The proposed detection method has some of advantages, the greatest of which are as follows: first, it is no more necessary to remove oxygen from the analyte solution and second, this is a very fast and appropriate technique for determination of the drug compound in a wide variety of chromatographic analysis methods. Signal-to-noise ratio has significantly increased by application of discrete Fast Fourier Transform (FFT) method, background subtraction and two-dimensional integration of the electrode response over a selected potential range and time window. Also in this work some parameters such as sweep rate, eluent pH, and accumulation time and potential were optimized. The linear concentration range was of 1.0×10,7,1.0×10,10 mol/L (r=0.9975) with a limit of detection and quantitation 0.08 nmol/L and 0.15 nmol/L, respectively. The method has the requisite accuracy, sensitivity, precision and selectivity to assay letrozol in tablets. The influences of pH of eluent, accumulation potential, sweep rate, and accumulation time on the determination of the letrozol were considered. [source]


    Stripping Voltammetry at Microdisk Electrode Arrays: Theory

    ELECTROANALYSIS, Issue 24 2009

    Abstract Anodic stripping voltammetry (ASV) is an extremely powerful tool for detection of metal ions in solution through a two step process of preconcentration of the metal at the electrode surface, followed by electrodissolution. The second phase produces an electroanalytical response proportional to the amount of material deposited in the first phase. This paper utilizes theory to explore the electrochemical signals produced when considering ASV at a microelectrode or ultramicroelectrode arrays. The theory outlined is applicable mostly to thin mercury film absorption and metal adsorption. [source]


    Electrochemical Determination of Manganese Solubility in Mercury via Amalgamation and Stripping in the Room Temperature Ionic Liquid n -Hexyltriethylammonium Bis(trifluoromethanesulfonyl)imide, [N6,2,2,2][NTf2]

    ELECTROANALYSIS, Issue 24 2008

    Abstract The solubility of manganese in mercury was determined electrochemically via amalgamation and stripping in the room temperature ionic liquid n -hexyltriethylammonium bis(trifluoromethanesulfonyl)imide, [N6,2,2,2][NTf2]. A hemispherical mercury electrode was made by electrodepositing mercury onto a planar platinum microelectrode. Cyclic voltammetry of Mn2+ in [N6,2,2,2][NTf2] at the mercury microhemisphere electrode was investigated at temperatures of 298, 303 and 313,K. The solubility of Mn in Hg was determined on the basis of the charge under the reduction peak (Mn2+,Mn0) and the corresponding reoxidation. [source]


    A Reference Electrode for Electrochemical and Cryoelectrochemical Use in Tetrahydrofuran Solvent

    ELECTROANALYSIS, Issue 21 2005
    Christopher
    Abstract We report a reference electrode for direct use in tetrahydrofuran (THF) at low temperatures. A reference solution containing equimolar amounts of ferrocene/ferrocenium hexafluorophosphate (Fc/Fc+) are prepared to give a 4,mM solution in THF that contains tetrabutylammonium hexafluorophosphate (TBAF) supporting electrolyte thus, minimizing liquid junction potentials. The reference solution is added to a sealed glass tube with a porous frit at one end, and a platinum wire is inserted into the tube. The reference electrode assembly is then inserted into a THF test solution. Potentiometric measurements show that the system responds in the expected Nernstian fashion over the concentration and temperature ranges, 4,mM to 40,,M and 20,°C to ,45,°C respectively. In addition, it is shown by steady,state cyclic voltammetry at a platinum microelectrode that the chemical reactivity of ferrocenium hexafluorophosphate (Fc+) otherwise seen in THF is suppressed by ion-pairing with PF using tetrabutylammonium hexafluorophosphate (TBAF) as the supporting electrolyte. [source]


    Microwave Activation of Electrochemical Processes at Glassy Carbon and Boron-Doped Diamond Electrodes

    ELECTROANALYSIS, Issue 5-6 2005
    Kumar Sur, Ujjal
    Abstract Voltammetric experiments under intense microwave field conditions have been carried out at a carbon microfiber electrode, an array of carbon microfiber electrodes, and at a boron-doped diamond electrode. For the reversible one electron redox systems Fe(CN) and Ru(NH3) in aqueous KCl solution increased currents (up to 16 fold at a 33,,m diameter carbon microelectrode) and superheating (up to ca. 400,K at all types of electrodes) are observed. Electrodes with smaller diameter allow better signal enhancements to be achieved. From the missing effect of the supporting electrolyte concentration on the microwave enhanced currents, it can be concluded that effects observed at carbon electrodes (microwave absorbers) are due to the interaction of microwaves with the electrode material whereas for metal electrodes (microwave conductors) effects are dominated by the interaction of the microwaves with the aqueous dielectric. Short heat pulses can be applied by pulsing the microwave field and relatively fast temperature transients are observed for small electrodes. For the irreversible two electron oxidation of L -dopa in aqueous phosphate buffer, different types of effects are observed at glassy carbon and at boron-doped diamond. Arrays of carbon microfibers give the most reproducible and analytically useful current signal enhancements in the presence of microwaves. [source]


    Electrochemical Behavior and Detection of Dopamine and Ascorbic Acid at an Iron(II)tetrasulfophthalocyanine Modified Carbon Paste Microelectrode

    ELECTROANALYSIS, Issue 10 2003
    Joshua Oni
    Abstract In this article the electrocatalytic behavior of an iron(II)tetrasulfophthalocyanine modified carbon paste microelectrode for the oxidation of dopamine (DA) and ascorbic acid (AA) is described. Although the oxidation potential of ascorbic acid is shifted by over 100,mV to more positive potentials, no peak separation could be obtained. This can be explained by the immediate homogeneous reduction of the oxidation product of dopamine by ascorbic acid in solution. However, this reaction induces a shift of the half-wave potential as a function of ratio of concentration of dopamine to ascorbic acid (cDA/cAA). Therefore it was possible to determine the cAA and cDA from this potential shift and the experimental peak current. Detection limits of 4.5±0.2×10,7 and 7.5±0.5×10,7,mol,L,1 were obtained respectively for dopamine and ascorbic acid for cDA/cAA>0.01. [source]


    Regeneration-type nerve electrode using bundled microfluidic channels

    ELECTRONICS & COMMUNICATIONS IN JAPAN, Issue 4 2009
    Takafumi Suzuki
    Abstract Neural interface devices that will allow signals from the human nervous system to control external equipment are extremely important for the next generation of prosthetic systems. A novel multichannel regeneration-type nerve electrode designed to record from and stimulate peripheral nerves has been developed to allow the control of artificial hands and to generate artificial sensations. In this study a novel flexible regeneration microelectrode based on the nerve regeneration principle was designed and fabricated using MEMS technologies. The electrode, which was fabricated on a 25-µm-thick parylene C substrate, has multiple fluidic channels. Each fluidic channel was 100µm wide×30µm high×1500µm long and featured multiple electrodes inside them as recording and stimulating sites. They also served as guidance channels for the regenerating axons. © 2009 Wiley Periodicals, Inc. Electron Comm Jpn, 92(4): 29,34, 2009; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/ecj.10059 [source]


    Integration of a carbon microelectrode with a microfabricated palladium decoupler for use in microchip capillary electrophoresis/ electrochemistry

    ELECTROPHORESIS, Issue 1 2005
    Michelle L. Kovarik
    Abstract A method to integrate a carbon microelectrode with a microfabricated palladium decoupler for use in microchip capillary electrophoresis (CE) is detailed. As opposed to previous studies with decouplers for microchip CE, the working electrode material, which is made by micromolding of a carbon ink, is different from the decoupling electrode material (palladium). The manner in which the working electrode is made does not add additional etching or lithographic steps to the fabrication of the glass electrode plate. The hybrid poly(dimethylsiloxane)/glass device was characterized with fluorescence microscopy and by monitoring the CE-based separation of dopamine. Hydrodynamic voltammograms exhibited diffusion-limited currents occurring at potentials above +1.0 V. It was also shown that the half-wave potential does not shift as the separation potential is changed, as is the case in nondecoupled systems. Gated injections of dopamine in a 25 mM boric acid buffer (pH 9.2) showed a linear response from 200 to 5 ,M (r2 = 0.9992), with a sensitivity of 5.47 pA/,M and an estimated limit of detection of 2.3 ,M (0.621 fmol, S/N = 3). This is the first report of coupling a carbon electrode with a decoupler in microchip CE. [source]


    Continuous glucose monitoring system: an attractive support tool in diabetes education

    EUROPEAN DIABETES NURSING, Issue 1 2005
    L Saez-de-Ibarra BSc Diabetes Specialist Nurse
    Abstract The study was designed to determine the usefulness of the CGMS (continuous glucose monitoring system) as a support tool in type 1 diabetes education. The CGMS is a sensor system that measures interstitial glucose levels every five minutes for three or more days, by means of a microelectrode inserted in the subcutaneous tissue. People with type 1 diabetes (n=52), who actively participated in diabetes self-management programmes, were monitored with CGMS during three to five days. Patients were selected for CGMS when unsatisfied with the glycaemic results achieved, given the effort made. Ten patients used CSII, 14 used insulin glargine plus rapid acting insulin analogue and 28 used NPH insulin plus short acting insulin. All patients used blood glucose self-monitoring, with a mean of 6.5±1.4 glucose readings per day. The CGMS register was evaluated with the patient. Mean capillary glucose during the 15 days prior to CGMS, mean capillary glucose during CGMS and mean capillary glucose during the 15 days after CGMS are compared. Discussion of the record with the patient frequently allowed detection of inappropriate solving attitudes. Mean capillary glucose dropped from 155±20mg/dL (8.60±1.11mmol/L) prior to CGMS to 143±20mg/dL (7.94±1.11mmol/L) after CGMS (p=0.000). The effectiveness of CGMS (number of patients in whom mean glucose improved) rose from 66.7% in 2001 to 70.6% in 2002, 78.9% in 2003 and 88.8% in 2004. When the patient is involved in the analysis of glucose fluctuations, CGMS is a useful tool in diabetes education that will help achieve attitude changes because of the evidence depicted by the continuous glucose record. Experience in the use of this tool by the professional will improve its effectiveness. Copyright © 2005 FEND. [source]


    Switching between "On" and "Off" states of persistent activity in lateral entorhinal layer III neurons,

    HIPPOCAMPUS, Issue 4 2007
    Babak Tahvildari
    Abstract Persistent neural spiking maintains information during a working memory task when a stimulus is no longer present. During retention, this activity needs to be stable to distractors. More importantly, when retention is no longer relevant, cessation of the activity is necessary to enable processing and retention of subsequent information. Here, by means of intracellular recording with sharp microelectrode in in vitro rat brain slices, we demonstrate that single principal layer III neurons of the lateral entorhinal cortex (EC) generate persistent spiking activity with a novel ability to reliably toggle between spiking activity and a silent state. Our data indicates that in the presence of muscarinic receptor activation, persistent activity following an excitatory input may be induced and that a subsequent excitatory input can terminate this activity and cause the neuron to return to a silent state. Moreover, application of inhibitory hyperpolarizing stimuli is neither able to decrease the frequency of the persistent activity nor terminate it. The persistent activity can also be initiated and terminated by synchronized synaptic stimuli of layer II/III of the perirhinal cortex. The neuronal ability to switch "On" and "Off" persistent activity may facilitate the concurrent representation of temporally segregated information arriving in the EC and being directed toward the hippocampus. © 2007 Wiley-Liss, Inc. [source]


    Interfacing Conducting Polymer Nanotubes with the Central Nervous System: Chronic Neural Recording using Poly(3,4-ethylenedioxythiophene) Nanotubes

    ADVANCED MATERIALS, Issue 37 2009
    Mohammad Reza Abidian
    Microelectrodes implanted in the brain are increasingly being used to treat neurological disorders. However, robust and reliable chronic application of neural electrodes remains a challenge. Here, we report, the use of conducting polymer nanotubes as highly selective neural interfaces for chronic neural recordings. Poly(3,4-ethylenedioxythiophene) nanotubes were formed on the chronic neural microelectrode. The quality of neuronal spike recordings was significantly improved relative to metal electrode sites. [source]


    In-situ oxygen profiling and lignin modification in guts of wood-feeding termites

    INSECT SCIENCE, Issue 3 2010
    Jing Ke
    Abstract, Reports on the capability of wood-feeding termites (WFTs) in degrading wood particles and on the existence of aerobic environment in the localized guts suggest that their high efficiency of cellulose utilization is not only caused by cellulase, but also by biochemical factors that pretreat lignin. We thus extend the hypothesis that for highly efficient accessibility of cellulose, there should be direct evidence of lignin modification before the hindgut. The lignin degradation/modification is facilitated by the oxygenated environment in intestinal microhabitats. To test our hypothesis, we conducted experiments using a dissolved oxygen microelectrode with a tip diameter < 10 ,m to measure oxygen profiles in intestinal microhabitats of both Coptotermes formosanus (Shiraki) and Reticulitermes flavipes (Kollar). Lignin modification during passage through their three gut segments was also analyzed with pyrolysis gas chromatography/mass spectrometry. The data showed relatively high levels of oxygen in the midgut that could have promoted lignin oxidation. Consistent with the oxygen measurements, lignin modifications were also detected. In support of previously proposed hypotheses, these results demonstrate that lignin disruption, which pretreats wood for cellulose utilization, is initiated in the foregut, and continues in the midgut in both termites. [source]


    Influence of Wavefront Dynamics on Transmembrane Potential Characteristics During Atrial Fibrillation

    JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 8 2000
    CHARLES A. ATHILL M.D.
    Transmembrane Potential Characteristics. Introduction: Although computerized mapping studies have demonstrated the presence of multiple wavelets during atrial fibrillation (AF) and that action potential amplitude and duration in AF vary significantly from beat to heat, no study has correlated the single cell action potential changes with the patterns of activation during AF. Methods and Results: We studied wavefront dynamics and single cell transmembrane potential (TMP) characteristics in 12 isolated perfused canine right atria. The endocardial surface was mapped using 477 bipolar electrodes while TMP was recorded with a standard glass microelectrode from an epicardial cell. AF was induced in the presence of acetylcholine. Successful simultaneous TMP recordings and activation maps were made during six episodes of AF and for a total of 141 activations. Large variations of TMP amplitude and duration were observed frequently; 34% of them have a low amplitude (<50% of the amplitude recorded during pacing). Low-amplitude potentials were recorded when the impaled cell was (1) in an area of random reentry (67%, n = 36); (2) within 3.2 mm of the core of organized functional reentry (22%, n = 12); (3) in the middle of two merging wavefronts (9%, n = 5); and (4) at the point of spontaneous wavebreak (2%, n = 1). Conclusion: Large variations of TMP are observed frequently during in vitro AF. Low-amplitude TMPs are associated with specific patterns of AF activation wavefronts. [source]


    Nano-level detection of naltrexone hydrochloride in its pharmaceutical preparation at Au microelectrode in flowing solutions by fast fourier transforms continuous cyclic voltammetry as a novel detector

    JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 8 2007
    P. Norouzi
    Abstract An easy and fast Fourier transform continuous cyclic voltammetric technique for monitoring of ultra trace amounts of naltrexone in a flow-injection system has been introduced in this work. The potential waveform, consisting of the potential steps for cleaning, stripping and potential ramp, was continuously applied on an Au disk microelectrode (with a 12.5 µm in radius). The proposed detection method has some of advantages, the greatest of which are as follows: first, it is no more necessary to remove oxygen from the analyte solution and second, this is a very fast and appropriate technique for determination of the drug compound in a wide variety of chromatographic analysis methods. The method was linear over the concentration range of 0.34,34000 pg/mL (r,=,0.9985) with a limit of detection 8.0,×,10,4 nM. The method has the requisite accuracy, sensitivity, precision, and selectivity to assay naltrexone in tablets. The influences of pH of eluent, accumulation potential, sweep rate, and accumulation time on the determination of the naltrexone were considered. © 2007 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 96:2009,2017, 2007 [source]


    On-line corrosion and corrosion-wear monitoring using a modified electrochemical noise technique

    MATERIALS AND CORROSION/WERKSTOFFE UND KORROSION, Issue 6 2005
    P.-Q. Wu
    Abstract In this study, a modified electrochemical noise (EN) technique was used to monitor uniform corrosion and pitting corrosion. In the EN technique, one working electrode is coupled to a microelectrode (e.g. Pt) through a zero resistance ammeter to sense current noise. Results show that the EN technique with a properly selected microelectrode appears to be able to distinguish different corrosion processes like uniform corrosion on mild carbon steel and pitting corrosion on stainless steel. Furthermore, this EN technique was successfully implemented in on-line corrosion-wear monitoring of stainless steel. In addition, the modified EN technique can sensitively detect the interface of nitrogen ion implanted layer and the stainless steel substrate, thus determining the thickness of the implanted layer. [source]


    Electrophysiological mapping for the implantation of deep brain stimulators for Parkinson's disease and tremor

    MOVEMENT DISORDERS, Issue S14 2006
    Robert E. Gross MD
    Abstract The vast majority of centers use electrophysiological mapping techniques to finalize target selection during the implantation of deep brain stimulation (DBS) leads for the treatment of Parkinson's disease and tremor. This review discusses the techniques used for physiological mapping and addresses the questions of how various mapping strategies modify target selection and outcome following subthalamic nucleus (STN), globus pallidus internus (GPi), and ventralis intermedius (Vim) deep brain stimulation. Mapping strategies vary greatly across centers, but can be broadly categorized into those that use microelectrode or semimicroelectrode techniques to optimize position prior to implantation and macrostimulation through a macroelectrode or the DBS lead, and those that rely solely on macrostimulation and its threshold for clinical effects (benefits and side effects). Microelectrode criteria for implantation into the STN or GPi include length of the nucleus recorded, presence of movement-responsive neurons, and/or distance from the borders with adjacent structures. However, the threshold for the production of clinical benefits relative to side effects is, in most centers, the final, and sometimes only, determinant of DBS electrode position. Macrostimulation techniques for mapping, the utility of microelectrode mapping is reflected in its modification of electrode position in 17% to 87% of patients undergoing STN DBS, with average target adjustments of 1 to 4 mm. Nevertheless, with the absence of class I data, and in consideration of the large number of variables that impact clinical outcome, it is not possible to conclude that one technique is superior to the other in so far as motor Unified Parkinson's Disease Rating Scale outcome is concerned. Moreover, mapping technique is only one out of many variables that determine the outcome. The increase in surgical risk of intracranial hemorrhage correlated to the number of microelectrode trajectories must be considered against the risk of suboptimal benefits related to omission of this technique. © 2006 Movement Disorder Society [source]


    Simultaneous flux and current measurement from single plant protoplasts reveals a strong link between K+ fluxes and current, but no link between Ca2+ fluxes and current

    THE PLANT JOURNAL, Issue 1 2006
    Matthew Gilliham
    Summary We present a thorough calibration and verification of a combined non-invasive self-referencing microelectrode-based ion-flux measurement and whole-cell patch clamp system as a novel and powerful tool for the study of ion transport. The system is shown to be capable of revealing the movement of multiple ions across the plasma membrane of a single protoplast at multiple voltages and in complex physiologically relevant solutions. Wheat root protoplasts are patch clamped in the whole-cell configuration and current,voltage relations obtained whilst monitoring net K+ and Ca2+ flux adjacent to the membrane with ion-selective electrodes. At each voltage, net ion flux (nmol m,2 sec,1) is converted to an equivalent current density (mA m,2) taking into account geometry and electrode efficiency, and compared with the net current density measured with the patch clamp system. Using this technique, it is demonstrated that the K+ -permeable outwardly rectifying conductance (KORC) is responsible for net outward K+ movement across the plasma membrane [1:1 flux-to-current ratio (1.21 ± 0.14 SEM, n = 15)]. Variation in the K+ flux-to-current ratio among single protoplasts suggests a heterogeneous distribution of KORC channels on the membrane surface. As a demonstration of the power of the technique we show that despite a significant Ca2+ permeability being associated with KORC (analysis of tail current reversal potentials), there is no correlation between Ca2+ flux and KORC activity. A very significant observation is that large Ca2+ fluxes are electrically silent and probably tightly coupled to compensatory charge movements. This analysis demonstrates that it is mandatory to measure flux and currents simultaneously to investigate properly Ca2+ transport mechanisms and selectivity of ion channels in general. [source]


    Three-dimensional surface maps link local atrophy and fast ripples in human epileptic hippocampus,

    ANNALS OF NEUROLOGY, Issue 6 2009
    Jennifer A. Ogren PhD
    Objectives There is compelling evidence that pathological high-frequency oscillations (HFOs), called fast ripples (FR, 150,500Hz), reflect abnormal synchronous neuronal discharges in areas responsible for seizure genesis in patients with mesial temporal lobe epilepsy (MTLE). It is hypothesized that morphological changes associated with hippocampal atrophy (HA) contribute to the generation of FR, yet there is limited evidence that hippocampal FR-generating sites correspond with local areas of atrophy. Methods Interictal HFOs were recorded from hippocampal microelectrodes in 10 patients with MTLE. Rates of FR and ripple discharge from each microelectrode were evaluated in relation to local measures of HA obtained using 3-dimensional magnetic resonance imaging (MRI) hippocampal modeling. Results Rates of FR discharge were 3 times higher in areas of significant local HA compared with rates in nonatrophic areas. Furthermore, FR occurrence correlated directly with the severity of damage in these local atrophic regions. In contrast, we found no difference in rates of ripple discharge between local atrophic and nonatrophic areas. Interpretation The proximity between local HA and microelectrode-recorded FR suggests that morphological changes such as neuron loss and synaptic reorganization may contribute to the generation of FR. Pathological HFOs, such as FR, may provide a reliable surrogate marker of abnormal neuronal excitability in hippocampal areas responsible for the generation of spontaneous seizures in patients with MTLE. Based on these data, it is possible that MRI-based measures of local HA could identify FR-generating regions, and thus provide a noninvasive means to localize epileptogenic regions in hippocampus. Ann Neurol 2009;66:783,791 [source]


    Monitoring in Real Time with a Microelectrode the Release of Reactive Oxygen and Nitrogen Species by a Single Macrophage Stimulated by its Membrane Mechanical Depolarization

    CHEMBIOCHEM, Issue 4 2006
    Christian Amatore Prof.
    Abstract Macrophages are key cells of the immune system. During phagocytosis, the macrophage engulfs a foreign bacterium, virus, or particle into a vacuole, the phagosome, wherein oxidants are produced to neutralize and decompose the threatening element. These oxidants derive from in situ production of superoxide and nitric oxide by specific enzymes. However, the chemical nature and sequence of release of these compounds is far from being completely determined. The aim of the present work was to study the fundamental mechanism of oxidant release by macrophages at the level of a single cell, in real time and quantitatively. The tip of a microelectrode was positioned at a micrometric distance from a macrophage in a culture to measure oxidative-burst release by the cell when it was submitted to physical stimulation. The ensuing release of electroactive reactive oxygen and nitrogen species was detected by amperometry and the exact nature of the compounds was characterized through comparison with in vitro electrochemical oxidation of H2O2, ONOO,, NO., and NO2, solutions. These results enabled the calculation of time variations of emission flux for each species and the reconstruction of the original flux of production of primary species, O2., and NO., by the macrophage. [source]


    Monitoring of Anti Cancer Drug Letrozole by Fast Fourier Transform Continuous Cyclic Voltammetry at Gold Microelectrode

    CHINESE JOURNAL OF CHEMISTRY, Issue 7 2010
    Parviz Norouzi
    Abstract A continuous cyclic voltammetric study of letrozole at gold microelectrode was carried out. The drug in phosphate buffer (pH 2.0) is adsorbed at ,200 mV, giving rise to change in the current of well-defined oxidation peak of gold in the flow injection system. The proposed detection method has some of advantages, the greatest of which are as follows: first, it is no more necessary to remove oxygen from the analyte solution and second, this is a very fast and appropriate technique for determination of the drug compound in a wide variety of chromatographic analysis methods. Signal-to-noise ratio has significantly increased by application of discrete Fast Fourier Transform (FFT) method, background subtraction and two-dimensional integration of the electrode response over a selected potential range and time window. Also in this work some parameters such as sweep rate, eluent pH, and accumulation time and potential were optimized. The linear concentration range was of 1.0×10,7,1.0×10,10 mol/L (r=0.9975) with a limit of detection and quantitation 0.08 nmol/L and 0.15 nmol/L, respectively. The method has the requisite accuracy, sensitivity, precision and selectivity to assay letrozol in tablets. The influences of pH of eluent, accumulation potential, sweep rate, and accumulation time on the determination of the letrozol were considered. [source]


    Voltammetric Determination of L -Dopa on Poly(3,4-ethylenedioxythiophene)-Single-Walled Carbon Nanotube Composite Modified Microelectrodes

    ELECTROANALYSIS, Issue 4 2010
    Jayaraman Mathiyarasu
    Abstract In the present communication, it is shown that platinum microelectrodes electrochemically coated with a composite of poly(3,4-)ethylenedioxythiophene and single-walled carbon nanotubes (PEDOT/SWNT) enable determinations of 3,4-dihydroxy- L -phenylalaines (L -dopa) in neutral phosphate buffer solutions containing an excess of ascorbic acid. The interpenetrated networked nanostructure of the composite was characterized by scanning electron microscope (SEM) and Raman spectroscopy. It is shown that the presence of the composite gives rise to an increase in the electroactive area of an order of magnitude in compared to the area for the bare microelectrodes. The composite film-coated microelectrode, which yielded reversible cyclic voltammograms for the ferro/ferricyanide redox couple for scan rates between 0.01 and 0.10,V s,1, also gave rise to two well-resolved oxidation peaks for L -dopa and ascorbic acid (AA). The latter effect, which was not seen in the absence of the composite, enabled differential pulse voltammetric determinations of L -dopa in the concentration range between 0.1 to 20,,M with a detection limit of 100,nM. [source]


    Spatial Imaging of Cu2+ -Ion Release by Combining Alternating Current and Underpotential Stripping Mode Scanning Electrochemical Microscopy

    ELECTROANALYSIS, Issue 2-3 2007
    Dirk Ruhlig
    Abstract Anodic underpotential stripping voltammetry was integrated into SECM in order to characterize local corrosion of metallic copper deposits on metal surfaces as a model for copper containing alloys. Primarily, the alternating current mode of SECM was applied in an electrolyte of low ionic strength for localizing possible corrosion sites without any perturbation of the corroding surface, e.g., by the presence of any redox mediator. Sequentially, the release of Cu2+ -ions was confirmed and locally visualized at the previously detected electrochemically active sites by means of spatially resolved anodic underpotential stripping voltammetry performed during SECM scanning. Underpotential stripping voltammetry of Cu2+ -ions was performed at a specifically developed 15,,m gold-coated Pt microelectrode used as SECM tip with a detection limit of 0.15,nM Cu2+ (N=4, RSD=6%) for an accumulation of 45,s at ,0.4,V. SECM images of model samples such as copper coated microelectrodes and lacquered metallic copper workpieces demonstrated the feasibility and applicability of combining AC- and underpotential stripping mode of SECM for local visualization of Cu2+ -ion release from corroding surfaces. [source]


    Voltammetric Determination of ,-Tocopheryl Acetate in Pharmaceutical Dosage Forms

    ELECTROANALYSIS, Issue 11 2004
    Slawomir Michalkiewicz
    Abstract A simple and rapid voltammetric method has been developed for the quantitative determination of ,-tocopheryl acetate (,-TOAc) in pharmaceutical preparations. Studies with linear scan (LSV), square-wave (SQWV) and differential pulse voltammetry (DPV) were carried out using platinum microelectrodes. A well-defined, irreversible oxidation wave/peak was obtained at 1.30,V (vs. Ag/AgCl reference electrode.) The use of SQWV or DPV technique provides a precise determination of ,-tocopheryl acetate using the multiple standard addition method. The statistical parameters and the recovery study data clearly indicate good reproducibility and accuracy of the method. Accuracy of the results assessed by recovery trials was found within the 99.3% to 103.5%, and 99.1% to 101.4%, for SQWV and DPV, respectively. The quantification limits for the both voltammetric techniques were found to be 6×10,5,M (SQWV) and 7×10,5,M (DPV). Analysis of the authentic samples containing ,-TOAc showed no interference with common additives and excipients, such as unsaturated fatty acids (co-formulated as glycerine esters) and vitamin A (as retinol or ,-carotene). The method proposed does not require any pretreatment of the pharmaceutical dosage forms. A gas chromatography determination of ,-TOAc in real samples was also performed for comparison. [source]


    Integrated Microanalytical System Coupling Permeation Liquid Membrane and Voltammetry for Trace Metal Speciation.

    ELECTROANALYSIS, Issue 10 2004
    Optimization, Technical Description
    Abstract A new minicell coupling the liquid-liquid extraction technique called permeation liquid membrane (PLM) with an integrated Ir-based Hg-plated microelectrode array for voltammetric detection has been developed for the speciation of heavy metals in natural waters. Lead and cadmium have been used as model compounds. The PLM consists of a carrier (0.1,M 22DD+0.1,M lauric acid) dissolved in 1,:,1 mixture of toluene/phenylhexane held in the small pores (30,nm) of a hydrophobic polypropylene membrane (Celgard 2500). One side of this membrane is in contact with a flowing source solution, containing the metal ions of interest. An acceptor or strip solution (pyrophosphate) is placed on the other side of the PLM with the microelectrode array placed at 480,,m of the PLM. The analyte is transported by the carrier from the source solution to the strip solution. The originality of the new minicell is that accumulation in the strip solution is voltammetrically followed by the integrated microelectrode array in real time, and at low concentration level, using square-wave anodic stripping voltammetry (SWASV). In order to protect the Hg microelectrodes from the adsorption of the hydrophobic carrier, the microelectrodes are embedded in a thin gel layer (280,,m) of 1.5% LGL agarose gel containing 10% of hydrophobic silica particles C18. The choice of optimum conditions is discussed in details in this article. Due to the very small effective strip volume of the new cell (less than 1,,L), high enrichment factor can be obtained (e.g., 330 for Pb) after 2,hours of accumulation. No deaeration of the solutions is required for SWASV measurements. Detection limits under these conditions are 2,pM and 75,pM for Pb and Cd, respectively, using a voltammetric deposition time of 5,min. In addition, no fouling effects were observed with natural water samples. [source]


    Voltametric and Flow Injection Determination of Oxytetracycline Residues in Food Samples Using Carbon Fiber Microelectrodes

    ELECTROANALYSIS, Issue 7 2003
    L. Agüí
    Abstract A voltammetric method for the determination of the antibiotic oxytetracycline (OTC) in food samples is reported. Carbon fiber microelectrodes (CFMEs), which allow voltammetric measurements to be performed in a small volume (1,mL) of the analyte extract from the samples, are employed. Repeatable electroanalytical responses were obtained with no need of applying cleaning treatments to the CFME. Under the optimized square-wave conditions, a linear calibration plot for OTC was obtained in the 1.0×10,6,1.0×10,4,mol,L,1 range, with a detection limit of 2.9×10,7,mol,L,1 (150,ng,mL,1) OTC. The determination of OTC by a flow-injection method with amperometric detection using a homemade flow cell specially designed to work with CFMEs, was also evaluated using pure acetonitrile as the carrier. The SW voltammetric method was applied to the determination of OTC in spiked milk and eggs samples, at 100,ng,mL,1 and 200,ng g,1 levels, respectively. The procedure involved the extraction of the analyte in ethyl acetate, evaporation of the solvent and reconstitution of the residue in acetonitrile ,5.0×10,4,mol,L,1 tetrabutylammonium perchlorate medium. Recoveries of 96±8 and 91±8% were obtained for milk and eggs, respectively, by applying the standard additions method. [source]


    Electrochemical Nitric Oxide Sensors for Biological Samples , Principle, Selected Examples and Applications

    ELECTROANALYSIS, Issue 1 2003
    Fethi Bedioui
    Abstract The discoveries made in the 1980s that NO could be synthesized by mammalian cells and could act as physiological messenger and cytotoxic agent had elevated the importance of its detection. The numerous properties of NO, that enable it to carry out its diverse functions, also present considerable problems when attempting its detection and quantification in biological systems. Indeed, its total free concentration in physiological conditions has been established to be in nanomolar range. Thus, detection of nitric oxide remains a challenge, pointing out the difficult dual requirements for specificity and sensitivity. Exception made for the electrochemical techniques, most of the approaches (namely UV-visible spectroscopy, fluorescence, electron paramagnetic resonance spectroscopy) use indirect methods for estimating endogenous NO, relying on measurements of secondary species such as nitrite and nitrate or NO-adducts. They also suffer from allowing only ex situ measurements. So, the only strategies that allow a direct and in vivo detection of NO are those based on the use of ultramicroelectrodes. The reality is that surface electrode modification is needed to make the ultramicroelectrode material selective for NO. Therefore, the design of modified electrode surfaces using organized layers is very attractive and provides the ideal strategy. This review addresses a global description of the various approaches that have involved chemically modified microelectrodes specially designed for the electrochemical detection of NO in biological media. Selected significant examples of applications in biological tissues are also reported in order to highlight the importance of this approach in having new insights into the modulatory role of NO in physiology and pathophysiology. [source]