Home About us Contact | |||
Microdialysis
Kinds of Microdialysis Terms modified by Microdialysis Selected AbstractsAssessment of different techniques for subcutaneous glucose monitoring in Type 1 diabetic patients during ,real-life' glucose excursionsDIABETIC MEDICINE, Issue 3 2010J. K. Mader Diabet. Med. 27, 332,338 (2010) Abstract Aims, To compare the accuracy of two marketed subcutaneous glucose monitoring devices (Guardian RT, GRT; GlucoDay S, GDS) and standard microdialysis (CMA60; MD) in Type 1 diabetic patients. Methods, Seven male Type diabetic patients were investigated over a period of 26 h simulating real-life meal glucose excursions. Catheters of the three systems were inserted into subcutaneous adipose tissue of the abdominal region. For MD, interstitial fluid was sampled at 30- to 60-min intervals for offline glucose determination. Reference samples were taken at 15- to 60-min intervals. All three systems were prospectively calibrated to reference. Median differences, median absolute relative differences (MARD), median absolute differences (MAD), Bland,Altman plot and Clark Error Grid were used to determine accuracy. Results, Bland,Altman analysis indicated a mean glucose difference (2 standard deviations) between reference and interstitial glucose of ,10.5 (41.8) % for GRT, 20.2 (55.9) % for GDS and 6.5 (35.2) % for MD, respectively. Overall MAD (interquartile range) was 1.07 (0.39; 2.04) mmol/l for GRT, 1.59 (0.54; 3.08) mmol/l for GDS and 0.76 (0.26; 1.58) mmol/l for MD. Overall MARD was 15.0 (5.6; 23.4) % (GRT), 19.7 (6.1; 37.6) % (GDS) and 8.7 (4.1; 18.3) % (MD), respectively. Total sensor failure occurred in two subjects using GRT and one subject using GDS. Conclusions, The three investigated technologies had comparable performance. Whereas GRT underestimated actual blood glucose, GDS and MD overestimated blood glucose. Considerable deviations during daily life meal glucose excursions from reference glucose were observed for all three investigated technologies. Present technologies may require further improvement until individual data can lead to direct and automated generation of therapeutic advice in diabetes management. [source] Interstitial glucose in skeletal muscle of diabetic patients during an oral glucose tolerance testDIABETIC MEDICINE, Issue 1 2005M. Frossard Abstract Aim The presence of a transcapillary arterial,interstitial gradient for glucose (AIGglu) in skeletal muscle may be interpreted as a consequence of intact cellular glucose uptake. We hypothesized that the AIGglu decreases in Type 2 diabetes mellitus as a consequence of insulin resistance, whereas it remains intact in Type 1 diabetes. Methods Glucose concentrations were measured in serum and interstitial space fluid of skeletal muscle during an oral glucose tolerance test (OGTT) in patients with Type 1 and Type 2 diabetes and in young and middle-aged healthy volunteers, using microdialysis. Results The area under the curve for glucose in serum (AUCSE) was higher than in interstitial space fluid of skeletal muscle (AUCMU) in healthy young (AUCSE = 1147 ± 332 vs. AUCMU = 633 ± 257 mM/min/ml; P = 0.006), healthy middle-aged volunteers (AUCSE = 1406 ± 186 vs. AUCMU = 1048 ± 229 mM/min/ml; P = 0.001) and in Type 1 diabetic patients (AUCSE = 2273 ± 486 vs. AUCMU = 1655 ± 178 mM/min/ml; P = 0.003). In contrast, in Type 2 diabetic patients AUCSE (2908 ± 1023 mM/min/ml) was not significantly different from AUCMU (2610 ± 722 mM/min/ml; P = NS). Conclusion The present data indicate that AIGglu is compromised in Type 2 diabetes in contrast to Type 1 diabetes where it appears to be normal. Because no changes in muscle blood flow were detected, insulin resistance appears to be the main cause for the observed decreased AIGglu in skeletal muscle in Type 2 diabetic patients. [source] Capillary and microchip electrophoresis in microdialysis: Recent applicationsELECTROPHORESIS, Issue 1 2010Elizabeth Guihen Abstract The theme of this review is to highlight the importance of microscale electrophoretic-based separation systems in microdialysis (,D). The ability of CE and MCE to yield very rapid and highly efficient separations using just nanolitre volumes of microdialysate samples will also be discussed. Recent advances in this area will be highlighted, by illustration of some exciting new applications while the need for further innovation will be covered. The first section briefly introduces the concept of ,D sampling coupled with electrophoresis-based separation and the inherent advantages of this approach. The following section highlights some specific applications of CE separations in the detection of important biomarkers such as low-molecular-weight neurotransmitters, amino acids, and other molecules that are frequently encountered in ,D. Various detection modes in CE are outlined and some of the advantages and drawbacks thereof are discussed. The last section introduces the concepts of micro-total analysis systems and the coupling of MCE and ,D. Some of the latest innovations will be illustrated. The concluding section reflects on the future of this important chemical alliance between ,D and CE/MCE. [source] Direct automatic determination of free and total anesthetic drugs in human plasma by use of a dual (microdialysis,microextraction by packed sorbent) sample treatment coupled at-line to NACE,MSELECTROPHORESIS, Issue 10 2009Gabriel Morales-Cid Abstract This paper reports for the first time the use of microextraction by packed sorbent in combination with CE. The combined system was used to determine anesthetic drugs in human plasma. A microdialysis fiber was coupled on-line to the microextraction unit in order to distinguish between free and total concentrations of drugs. The system was automated by connecting the microextraction unit to a syringe pump and interfacing it to a computer. The ensuing method allows the determination of 10,,g/L concentrations of free drugs and 1,,g/L concentrations of total drugs from only 200,,L of sample with an RSD of less than 9%. [source] Integration of continuous-flow sampling with microchip electrophoresis using poly(dimethylsiloxane)-based valves in a reversibly sealed deviceELECTROPHORESIS, Issue 14 2007Michelle W. Li Abstract Here we describe a reversibly sealed microchip device that incorporates poly(dimethylsiloxane) (PDMS)-based valves for the rapid injection of analytes from a continuously flowing stream into a channel network for analysis with microchip electrophoresis. The microchip was reversibly sealed to a PDMS-coated glass substrate and microbore tubing was used for the introduction of gas and fluids to the microchip device. Two pneumatic valves were incorporated into the design and actuated on the order of hundreds of milliseconds, allowing analyte from a continuously flowing sampling stream to be injected into an electrophoresis separation channel. The device was characterized in terms of the valve actuation time and pushback voltage. It was also found that the addition of sodium dodecyl sulfate (SDS) to the buffer system greatly increased the reproducibility of the injection scheme and enabled the analysis of amino acids derivatized with naphthalene-2,3-dicarboxaldehyde/cyanide. Results from continuous injections of a 0.39,nL fluorescein plug into the optimized system showed that the injection process was reproducible (RSD of 0.7%, n,=,10). Studies also showed that the device was capable of monitoring off-chip changes in concentration with a device lag time of 90,s. Finally, the ability of the device to rapidly monitor on-chip concentration changes was demonstrated by continually sampling from an analyte plug that was derivatized upstream from the electrophoresis/continuous flow interface. A reversibly sealed device of this type will be useful for the continuous monitoring and analysis of processes that occur either off-chip (such as microdialysis sampling) or on-chip from other integrated functions. [source] Sensitive chiral analysis by capillary electrophoresisELECTROPHORESIS, Issue 1 2006Carmen García-Ruiz Abstract In this review, an updated view of the different strategies used up to now to enhance the sensitivity of detection in chiral analysis by CE will be provided to the readers. With this aim, it will include a brief description of the fundamentals and most of the recent applications performed in sensitive chiral analysis by CE using offline and online sample treatment techniques (SPE, liquid,liquid extraction, microdialysis, etc.), on-column preconcentration techniques based on electrophoretic principles (ITP, stacking, and sweeping), and alternative detection systems (spectroscopic, spectrometric, and electrochemical) to the widely used UV-Vis absorption detection. [source] In vivo simultaneous monitoring of ,-aminobutyric acid, glutamate, and L -aspartate using brain microdialysis and capillary electrophoresis with laser-induced fluorescence detection: Analytical developments and in vitro/in vivo validationsELECTROPHORESIS, Issue 18 2003Valérie Sauvinet Abstract ,-Aminobutyric acid (GABA), glutamate (Glu), and L -aspartate (L -Asp) are three major amino acid neurotransmitters in the central nervous system. In this work, a method for the separation of these three neurotransmitters in brain microdialysis samples using a commercially available capillary electrophoresis (CE) system has been developed. Molecules were tagged on their primary amine function with the fluorogene agent naphthalene-2,3-dicarboxaldehyde (NDA), and, after separation by micellar electrokinetic chromatography, were detected by laser-induced fluorescence using a 442 nm helium-cadmium laser. The separation conditions for the analysis of derivatized neurotransmitters in standard solutions and microdialysates have been optimized, and this method has been validated on both pharmacological and analytical basis. The separation of GABA, Glu, and L -Asp takes less than 10 min by using a 75 mmol/L borate buffer, pH 9.2, containing 70 mmol/L SDS and 10 mmol/L hydroxypropyl-,-cyclodextrin and +,25 kV voltage. The detection limits were 3, 15 nmol/L and, 5 nmol/L for GABA, Glu, and L -Asp, respectively. Moreover, submicroliter samples can be analyzed. This method allows a simple, rapid and accurate measurement of the three amino acid neurotransmitters for the in vivo brain monitoring using microdialysis sampling. [source] On-line biosensors for simultaneous determination of glucose, choline, and glutamate integrated with a microseparation systemELECTROPHORESIS, Issue 18 2003Guoyue Shi Abstract An effective microseparation system integrated with ring-disc electrodes and two microfluidic devices was fabricated for in vivo determination using a microdialysis pump. The major interference of ascorbic acid (AA) was excluded by direct oxidation with ascorbate oxidase. Glucose, glutamate, and choline were successfully determined simultaneously through the biosensors modified with a bilayer of osmium-poly(4-vinylpyridine)gel-horseradish peroxidase (Os-gel-HRP)/glucose oxidase (GOD), glutamate oxidase (GlutaOD) or choline oxidase (ChOD). To stabilize the biosensors, 0.2% polyethylenimine (PEI) was mixed with the oxidases. The cathodic currents of glucose, glutamate, and choline biosensors started to increase after the standard solutions were injected into the microseparation system. The on-line biosensors show a wide calibration range (10,7,10,5 mol/L) with a detection limit of 10,8 mol/L at the working potential of ,50 mV. The variations of glucose, glutamate, and choline were determined simultaneously in a free moving rat when we perfused the medial frontal cortex with 100 ,mol/L N -methyl- D -aspartate (NMDA) solution, which is the agonist of the NMDA receptor. [source] A high-throughput on-line microdialysis-capillary assay for D -serineELECTROPHORESIS, Issue 7-8 2003Kylie B. O'Brien Abstract A high-throughput method is described for the analysis of D -serine and other neurotransmitters in tissue homogenates. Analysis is performed by microdialysis-capillary electrophoresis (CE) with laser-induced fluorescence (LIF) detection in a sheath flow detection cell. Sample pretreatment is not required as microdialysis sampling excludes proteins and cell fragments. Primary amines are derivatized on-line with o -phthaldialdehyde (OPA) in the presence of ,-mercaptoethanol followed by on-line CE-LIF analysis. Under the separation conditions described here, D -serine is resolved from L -serine and other primary amines commonly found in biological samples. Each separation requires less than 22 s. Eliminating the need for sample pretreatment and performing the high-speed CE analysis on-line significantly reduces the time required for D -serine analysis when compared with traditional methods. This method has been used to quantify D -serine levels in larval tiger salamander retinal homogenates, as well as dopamine, ,-amino- n -butyric acid (GABA), glutamate and L -aspartate. D -serine release from an intact retina was also detected. [source] Vigabatrin extracellular pharmacokinetics and concurrent ,-aminobutyric acid neurotransmitter effects in rat frontal cortex and hippocampus using microdialysisEPILEPSIA, Issue 2 2009Xin Tong Summary Purpose:, To investigate the pharmacokinetic interrelationship of vigabatrin in blood and the brain (frontal cortex vs. hippocampus) and to ascertain the relationship between brain extracellular vigabatrin concentrations and concurrent ,-aminobutyric acid (GABA) concentrations. Methods:, Sprague-Dawley rats were implanted with a jugular vein catheter for blood sampling, and microdialysis probes in the frontal cortex and hippocampus for extracellular fluid (ECF) sampling. Vigabatrin was administered intraperitoneally at two different doses (500 and 1,000 mg/kg), and blood and ECF were collected at timed intervals up to 8 h. Rats were freely moving and behaving. Vigabatrin (sera and ECF) and GABA (ECF) concentrations were measured with use of high performance liquid chromatography (HPLC). Results:, Vigabatrin concentrations in blood rose linearly and dose-dependently, and vigabatrin rapidly appeared in the brain as evidenced by the detection of vigabatrin in the ECF of both the frontal cortex and hippocampus at time of first sampling (15 min). However, frontal cortex concentrations were twofold greater than those of the hippocampus. Furthermore, GABA concentrations increased five-fold in the frontal cortex but were unaffected in the hippocampus. In addition, GABA concentrations began to increase approximately 3 h after vigabatrin administration at a time when vigabatrin concentrations were in exponential decline. Conclusions:, Vigabatrin distribution in the brain is region specific, with frontal cortex concentrations substantially greater than those seen in the hippocampus. Elevation of GABA concentrations did not reflect the concentration profile of vigabatrin but reflected its regional distribution. [source] Decreased hippocampal volume on MRI is associated with increased extracellular glutamate in epilepsy patientsEPILEPSIA, Issue 8 2008Idil Cavus Summary Purpose: Temporal lobe epilepsy (TLE) is associated with smaller hippocampal volume and with elevated extracellular (EC) glutamate levels. We investigated the relationship between the hippocampal volume and glutamate in refractory TLE patients. Methods: We used quantitative MRI volumetrics to measure the hippocampal volume and zero-flow microdialysis to measure the interictal glutamate, glutamine, and GABA levels in the epileptogenic hippocampus of 17 patients with medication-resistant epilepsy undergoing intracranial EEG evaluation. The relationships between hippocampal volume, neurochemical levels, and relevant clinical factors were examined. Results: Increased EC glutamate in the epileptogenic hippocampus was significantly related to smaller ipsilateral (R2= 0.75, p < 0.0001), but not contralateral hippocampal volume when controlled for glutamine and GABA levels, and for clinical factors known to influence hippocampal volume. Glutamate in the atrophic hippocampus was significantly higher (p = 0.008, n = 9), with the threshold for hippocampal atrophy estimated as 5 ,M. GABA and glutamine levels in the atrophic and nonatrophic hippocampus were comparable. Decreased hippocampal volume was related to higher seizure frequency (p = 0.008), but not to disease duration or febrile seizure history. None of these clinical factors were related to the neurochemical levels. Conclusions: We provide evidence for a significant association between increased EC glutamate and decreased ipsilateral epileptogenic hippocampal volume in TLE. Future work will be needed to determine whether the increase in glutamate has a causal relationship with hippocampal atrophy, or whether another, yet unknown factor results in both. This work has implications for the understanding and treatment of epilepsy as well as other neurodegenerative disorders associated with hippocampal atrophy. [source] Neocortical Microenvironment in Patients with Intractable Epilepsy: Potassium and Chloride ConcentrationsEPILEPSIA, Issue 2 2006Ali Gorji Summary:,Purpose: The regulation of extracellular ion concentrations plays an important role in neuronal function and epileptogenesis. Despite the many studies into the mechanisms of epileptogenesis in human experimental models, no data are available regarding the fluctuations of extracellular potassium ([K+]o) and chloride ([Cl,]o) concentrations, which could underlie seizure susceptibility in human chronically epileptic tissues in vivo. Methods: By using cerebral microdialysis during surgical resection of epileptic foci, the basic [K+]o and [Cl,]o as well as their changes after epicortical electric stimulation were studied in samples of dialysates obtained from 11 patients by ion-selective microelectrodes. Results: The mean basal values of [K+]o and [Cl,]o in all patients were 3.83 ± 0.08 mM and 122.9 ± 2.6 mM, respectively. However, significant differences were observed in the basal levels of both [K+]o and [Cl,]o between different patients. Statistically, no correlation was found between basal [K+]o or [Cl,]o and electrocorticogram (ECoG) spike activity, but in one patient, dramatically lowered baseline [Cl,]o was accompanied by enhanced ECoG spike activity. Application of epicortical electrical stimulation increased [K+]o but not [Cl,]o in all cases. According to the velocity as well as spatial distribution of [K+]o reduction to the prestimulation levels, three different types of responses were observed: slow decline, fast decline, and slow and fast declines at adjacent sites. Conclusions: These data may represent abnormalities in ion homeostasis of the epileptic brain. [source] Evidence for a Role of the Parafascicular Nucleus of the Thalamus in the Control of Epileptic Seizures by the Superior ColliculusEPILEPSIA, Issue 1 2005Karine Nail-Boucherie Summary:,Purpose: The aim of this study was to investigate whether the nucleus parafascicularis (Pf) of the thalamus could be a relay of the control of epileptic seizures by the superior colliculus (SC). The Pf is one of the main ascending projections of the SC, the disinhibition of which has been shown to suppress seizures in different animal models and has been proposed as the main relay of the nigral control of epilepsy. Methods: Rats with genetic absence seizures (generalized absence epilepsy rat from Strasbourg or GAERS) were used in this study. The effect of bilateral microinjection of picrotoxin, a ,-aminobutyric acid (GABA) antagonist, in the SC on the glutamate and GABA extracellular concentration within the Pf was first investigated by using microdialysis. In a second experiment, the effect of direct activation of Pf neurons on the occurrence of absence seizures was examined with microinjection of low doses of kainate, a glutamate agonist. Results: Bilateral injection of picrotoxin (33 pmol/side) in the SC suppressed spike-and-wave discharges for 20 min. This treatment resulted in an increase of glutamate but not GABA levels in the Pf during the same time course. Bilateral injection of kainate (35 pmol/side) into the Pf significantly suppressed spike-and-wave discharges for 20 min, whereas such injections were without effects when at least one site was located outside the Pf. Conclusions: These data suggest that glutamatergic projections to the Pf could be involved in the control of seizures by the SC. Disinhibition of these neurons could lead to seizure suppression and may be involved in the nigral control of epilepsy. [source] Postprandial interstitial insulin concentrations in type 2 diabetes relativesEUROPEAN JOURNAL OF CLINICAL INVESTIGATION, Issue 6 2006M. Sandqvist Abstract Background, An endothelial barrier for the insulin transport from the circulation to the target tissues of insulin has previously been suggested to contribute to insulin resistance. The interstitial insulin concentration (I-insulin) and insulin kinetics following a mixed meal have, however, previously not been characterized in human adipose tissue. Subjects and methods, Eight nondiabetic first-degree relatives (FDR) of type 2 diabetes patients were recruited. Their I-insulin was measured by microdialysis after a test meal with or without oral administration of the insulin secretagogue nateglinide (120 mg). In parallel, adipose tissue blood flow and lipolysis were measured by xenon-clearance and microdialysis, respectively. Results, The I-insulin increased after the test meal, and this response was more prominent on the day the subjects received the nateglinide tablet when compared with the day the subjects received the placebo tablet [I-insulin incremental area under the curve (IAUC) nateglinide 7612 ± 3032 vs. Plac 4682 ± 2613 pmol L,1 min; P < 0·05, mean ± SE]. However, the postprandial I-insulinmax/P-insulinmax ratio was similar on the two test days (nateglinide: 213 ± 62 vs. 501 ± 92 pmol L,1, I/P-ratio: 0·38 ± 0·06 and placebo: 159 ± 39 vs. 410 ± 74 pmol L,1, I/P-ratio: 0·36 ± 0·05). There was no difference in time of onset of insulin action in situ, or responsiveness, when comparing placebo and nateglinide. Conclusions, Microdialysis can now be used to measure the I-insulin in human adipose tissue following a mixed meal. The data also showed that the transendothelial delivery of insulin occurs rapidly, supporting the concept that transcapillary insulin transfer is a nonsaturable process in nondiabetic first-degree relatives of type 2 diabetes patients. [source] PRECLINICAL STUDY: Ghrelin administration into tegmental areas stimulates locomotor activity and increases extracellular concentration of dopamine in the nucleus accumbensADDICTION BIOLOGY, Issue 1 2007Elisabet Jerlhag ABSTRACT Ghrelin stimulates appetite, increases food intake and causes adiposity by mechanisms that include direct actions on the brain. Previously, we showed that intracerebroventricular administration of ghrelin has stimulatory and dopamine-enhancing properties. These effects of ghrelin are mediated via central nicotine receptors, suggesting that ghrelin can activate the acetylcholine,dopamine reward link. This reward link consists of cholinergic input from the laterodorsal tegmental area (LDTg) to the mesolimbic dopamine system that originates in the ventral tegmental area (VTA) and projects to the nucleus accumbens. Given that growth hormone secretagogue receptors (GHSR-1A) are expressed in the VTA and LDTg, brain areas involved in reward, the present series of experiments were undertaken to examine the hypothesis that these regions may mediate the stimulatory and dopamine-enhancing effects of ghrelin, by means of locomotor activity and in vivo microdialysis in freely moving mice. We found that local administration of ghrelin into the VTA (1 µg in 1 µl) induced an increase in locomotor activity and in the extracellular concentration of accumbal dopamine. In addition, local administration of ghrelin into the LDTg (1 µg in 1 µl) caused a locomotor stimulation and an increase in the extracellular levels of accumbal dopamine. Taken together, this indicates that ghrelin might, via activation of GHSR-1A in the VTA and LDTg, stimulate the acetylcholine,dopamine reward link, implicating that ghrelin is a part of the neurochemical overlap between the reward systems and those that regulate energy balance. [source] Roles of light and serotonin in the regulation of gastrin-releasing peptide and arginine vasopressin output in the hamster SCN circadian clockEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 7 2010Jessica M. Francl Abstract Daily timing of the mammalian circadian clock of the suprachiasmatic nucleus (SCN) is regulated by photic input from the retina via the retinohypothalamic tract. This signaling is mediated by glutamate, which activates SCN retinorecipient units communicating to pacemaker cells in part through the release of gastrin-releasing peptide (GRP). Efferent signaling from the SCN involves another SCN-containing peptide, arginine vasopressin (AVP). Little is known regarding the mechanisms regulating these peptides, as literature on in vivo peptide release in the SCN is sparse. Here, microdialysis,radioimmunoassay procedures were used to characterize mechanisms controlling GRP and AVP release in the hamster SCN. In animals housed under a 14/10-h light,dark cycle both peptides exhibited daily fluctuations of release, with levels increasing during the morning to peak around midday. Under constant darkness, this pattern persisted for AVP, but rhythmicity was altered for GRP, characterized by a broad plateau throughout the subjective night and early subjective day. Neuronal release of the peptides was confirmed by their suppression with reverse-microdialysis perfusion of calcium blockers and stimulation with depolarizing agents. Reverse-microdialysis perfusion with the 5-HT1A,7 agonist 8-OH-DPAT ((±)-8-hydroxydipropylaminotetralin hydrobromide) during the day significantly suppressed GRP but had little effect on AVP. Also, perfusion with the glutamate agonist NMDA, or exposure to light at night, increased GRP but did not affect AVP. These analyses reveal distinct daily rhythms of SCN peptidergic activity, with GRP but not AVP release attenuated by serotonergic activation that inhibits photic phase-resetting, and activated by glutamatergic and photic stimulation that mediate this phase-resetting. [source] Mu opioid receptor modulation of somatodendritic dopamine overflow: GABAergic and glutamatergic mechanismsEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 2 2009V. I. Chefer Abstract Mu opioid receptor (MOR) regulation of somatodendritic dopamine neurotransmission in the ventral tegmental area (VTA) was investigated using conventional microdialysis in freely moving rats and mice. Reverse dialysis of the MOR agonist DAMGO (50 and 100 ,m) into the VTA of rats produced a concentration-dependent increase in dialysate dopamine concentrations. Basal dopamine overflow in the VTA was unaltered in mice lacking the MOR gene. However, basal ,-aminobutyric acid (GABA) overflow in these animals was significantly increased, whereas glutamate overflow was decreased. Intra-VTA perfusion of DAMGO into wild-type (WT) mice increased dopamine overflow. GABA concentrations were decreased, whereas glutamate concentrations in the VTA were unaltered. Consistent with the loss of MOR, no effect of DAMGO was observed in MOR knockout (KO) mice. These data provide the first direct demonstration of tonically active MOR systems in the VTA that regulate basal glutamatergic and GABAergic neurotransmission in this region. We hypothesize that increased GABAergic neurotransmission following constitutive deletion of MOR is due to the elimination of a tonic inhibitory influence of MOR on GABAergic neurons in the VTA, whereas decreased glutamatergic neurotransmission in MOR KO mice is a consequence of intensified GABA tone on glutamatergic neurons and/or terminals. As a consequence, somatodendritic dopamine release is unaltered. Furthermore, MOR KO mice do not exhibit the positive correlation between basal dopamine levels and the glutamate/GABA ratio observed in WT mice. Together, our findings indicate a critical role of VTA MOR in maintaining an intricate balance between excitatory and inhibitory inputs to dopaminergic neurons. [source] Neuronal activity in the subthalamic nucleus modulates the release of dopamine in the monkey striatumEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2009Yasushi Shimo Abstract The primate subthalamic nucleus (STN) is commonly seen as a relay nucleus between the external and internal pallidal segments, and as an input station for cortical and thalamic information into the basal ganglia. In rodents, STN activity is also known to influence neuronal activity in the dopaminergic substantia nigra pars compacta (SNc) through inhibitory and excitatory mono- and polysynaptic pathways. Although the anatomical connections between STN and SNc are not entirely the same in primates as in rodents, the electrophysiologic and microdialysis experiments presented here show directly that this functional interaction can also be demonstrated in primates. In three Rhesus monkeys, extracellular recordings from SNc during microinjections into the STN revealed that transient pharmacologic activation of the STN by the acetylcholine receptor agonist carbachol substantially increased burst firing of single nigral neurons. Transient inactivation of the STN with microinjections of the GABA-A receptor agonist muscimol had the opposite effect. While the firing rates of individual SNc neurons changed in response to the activation or inactivation of the STN, these changes were not consistent across the entire population of SNc cells. Permanent lesions of the STN, produced in two animals with the fiber-sparing neurotoxin ibotenic acid, reduced burst firing and firing rates of SNc neurons, and substantially decreased dopamine levels in the primary recipient area of SNc projections, the striatum, as measured with microdialysis. These results suggest that activity in the primate SNc is prominently influenced by neuronal discharge in the STN, which may thus alter dopamine release in the striatum. [source] GABAergic mechanism mediated via D1 receptors in the rat periaqueductal gray participates in the micturition reflex: an in vivo microdialysis studyEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2008Takeya Kitta Abstract The periaqueductal gray (PAG) is critically involved in the micturition reflex, but little is known about the neuronal mechanisms involved. The present study elucidated dynamic changes in dopamine (DA), glutamate and ,-aminobutyric acid (GABA) in the rat PAG during the micturition reflex, with a focus on dopaminergic modulation using in vivo microdialysis combined with cystometrography. Extracellular levels of DA and glutamate increased, whereas levels of GABA decreased, in parallel with the micturition reflex. Application of a D1 receptor antagonist into the PAG produced increases in maximal voiding pressure (MVP) and decreases in intercontraction interval (ICI), suggesting that the micturition reflex was facilitated by D1 receptor blockade. The D1 receptor antagonist prevented micturition-induced decreases in GABA efflux but had no effect on DA or glutamate. Neither a D2 receptor antagonist nor a D1/D2 receptor agonist affected these neurochemical and physiological parameters. Micturition-induced inhibition of GABA was not observed in 6-hydroxydopamine (6-OHDA)-lesioned rats, an animal model of Parkinson's disease. 6-OHDA-lesioned rats exhibited bladder hyperactivity evaluated by increases in MVP and decreases in ICI, mimicking facilitation of the micturition reflex induced by D1 receptor blockade. These findings suggest that the micturition reflex is under tonic dopaminergic regulation through D1 receptors, in which a GABAergic mechanism is involved. Bladder hyperactivity observed in 6-OHDA-lesioned rats may be caused by dysfunction of GABAergic regulation underlying the micturition reflex. The present findings contribute to our understanding not only of the neurophysiology of the micturition reflex but also of the pathophysiology of lower urinary tract dysfunction in patients with Parkinson's disease. [source] Netrin-1 receptor-deficient mice show enhanced mesocortical dopamine transmission and blunted behavioural responses to amphetamineEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2007Alanna Grant Abstract The mesocorticolimbic dopamine (DA) system is implicated in neurodevelopmental psychiatric disorders including schizophrenia but it is unknown how disruptions in brain development modify this system and increase predisposition to cognitive and behavioural abnormalities in adulthood. Netrins are guidance cues involved in the proper organization of neuronal connectivity during development. We have hypothesized that variations in the function of DCC (deleted in colorectal cancer), a netrin-1 receptor highly expressed by DA neurones, may result in altered development and organization of mesocorticolimbic DA circuitry, and influence DA function in the adult. To test this hypothesis, we assessed the effects of reduced DCC on several indicators of DA function. Using in-vivo microdialysis, we showed that adult mice that develop with reduced DCC display increased basal DA levels in the medial prefrontal cortex and exaggerated DA release in response to the indirect DA agonist amphetamine. In contrast, these mice exhibit normal levels of DA in the nucleus accumbens but significantly blunted amphetamine-induced DA release. Concomitantly, using conditioned place preference, locomotor activity and prepulse inhibition paradigms, we found that reduced DCC diminishes the rewarding and behavioural-activating effects of amphetamine and protects against amphetamine-induced deficits in sensorimotor gating. Furthermore, we found that adult DCC-deficient mice exhibit altered dendritic spine density in layer V medial prefrontal cortex pyramidal neurones but not in nucleus accumbens medium spiny neurones. These findings demonstrate that reduced DCC during development results in a behavioural phenotype opposite to that observed in developmental models of schizophrenia and identify DCC as a critical factor in the development of DA function. [source] Paradoxical effects of prodynorphin gene deletion on basal and cocaine-evoked dopaminergic neurotransmission in the nucleus accumbensEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2006V. I. Chefer Abstract Quantitative and conventional microdialysis were used to investigate the effects of constitutive deletion of the prodynorphin gene on basal dopamine (DA) dynamics in the nucleus accumbens (NAc) and the responsiveness of DA neurons to an acute cocaine challenge. Saline- and cocaine-evoked locomotor activity were also assessed. Quantitative microdialysis revealed that basal extracellular DA levels were decreased, while the DA extraction fraction, an indirect measure of DA uptake, was unchanged in dynorphin (DYN) knockout (KO) mice. The ability of cocaine to increase NAc DA levels was reduced in KO. Similarly, cocaine-evoked locomotor activity was decreased in KO. The selective kappa opioid receptor agonist U-69593 decreased NAc dialysate DA levels in wildtype mice and this effect was enhanced in KO. Administration of the selective kappa opioid receptor (KOPr) antagonist nor-binaltorphimine to KO mice attenuated the decrease in cocaine-induced DA levels. However, it was ineffective in altering the decreased locomotor response to cocaine. These studies demonstrate that constitutive deletion of prodynorphin is associated with a reduction of extracellular NAc DA levels and a decreased responsiveness to acute cocaine. Data regarding the effects of U-69593 and nor-binaltorphimine in KO suggest that the kappa opioid receptor is up-regulated as a consequence of prodynorphin gene deletion and that this adaptation underlies the decrease in basal DA dynamics and cocaine-evoked DA levels observed in DYN KO mice. These findings suggest that the phenotype of DYN KO mice is not solely due to loss of endogenous opioid peptide but also reflects developmental compensations that occur at the level of the opioid receptor. [source] In vivo characterization of the angiotensin-(1,7)-induced dopamine and ,-aminobutyric acid release in the striatum of the ratEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 3 2005Bart Stragier Abstract The effect of angiotensin (Ang)-1,7 on dopamine, ,-aminobutyric acid (GABA) and glutamate release in the striatum of the rat was examined using in vivo microdialysis. Ang-(1,7) was administered locally in the striatum through the microdialysis probe. At a concentration of 100 µm, Ang-(1,7) caused a significant increase in extracellular dopamine and GABA but had no effect on glutamate release. The Ang-(1,7)-induced dopamine release was blocked by EC33, an inhibitor of aminopeptidase A, an enzyme which converts Ang-(1,7) into Ang-(3,7), suggesting that this effect occurs after metabolism into Ang-(3,7). Indeed, administration of Ang-(3,7) (10,100 µm) into the striatum caused a more potent increase in the striatal dopamine release than Ang-(1,7). Because Ang-(3,7) is an inhibitor of insulin-regulated aminopeptidase (IRAP) and because Ang IV, another IRAP inhibitor, also causes a concentration-dependent increase in dopamine in the rat striatum, IRAP may be involved in this effect. In contrast, EC33 had no effect on the Ang-(1,7)-induced GABA increase but the GABA release was blocked by the putative AT1-7 receptor antagonist A779 (0.1 µm) and by the nitric oxide synthase inhibitor L-NAME (1 mm). These drugs could not block the effect of Ang-(1,7) on the striatal dopamine release suggesting that only the observed effects on GABA release are mediated by the AT1-7 receptor and/or are associated with a release of nitric oxide. [source] Cocaine increases medial prefrontal cortical glutamate overflow in cocaine-sensitized rats: a time course studyEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 6 2004Jason M. Williams Abstract Excitatory amino acid transmission within mesocorticolimbic brain pathways is thought to play an important role in behavioural sensitization to psychomotor stimulants. The current studies evaluated a time course of the effects of cocaine on extracellular glutamate levels within the medial prefrontal cortex (mPFC) following increasing periods of withdrawal from repeated cocaine exposure. Male Sprague,Dawley rats underwent stereotaxic surgeries and were pretreated daily with saline (1 mL/kg/day × 4 days, i.p.) or cocaine (15 mg/kg/day × 4 days, i.p.) and withdrawn for 1, 7 or 30 days. After withdrawal rats were challenged with the same dose of saline or cocaine and in vivo microdialysis of the mPFC was conducted with concurrent analysis of locomotor activity. Animals that were withdrawn from repeated daily cocaine for 1 day and 7 days displayed an augmentation in cocaine-induced mPFC glutamate levels compared to saline and acute control subjects, which were similarly unaffected by cocaine challenge. At the 7 day time point, a subset of animals that received repeated cocaine did not express behavioural sensitization, nor did these animals exhibit the enhancement in mPFC glutamate in response to cocaine challenge. In contrast to these early effects, 30 days of withdrawal resulted in no significant changes in cocaine-induced mPFC glutamate levels regardless of the pretreatment or behavioural response. These data suggest that repeated cocaine administration transiently increases cocaine-induced glutamate levels in the mPFC during the first week of withdrawal, which may play an important role in the development of behavioural sensitization to cocaine. [source] Intravenous heroin self-administration decreases GABA efflux in the ventral pallidum: an in vivo microdialysis study in ratsEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 2 2004Stéphanie Caillé Abstract Several lines of evidence suggest that opiate-induced disinhibition of the ventral pallidum participates in the mediation of opiate reward, though direct in vivo evidence to support this hypothesis has been lacking. The present experiment tested this hypothesis by investigating alterations in ventral pallidal amino acid efflux using in vivo microdialysis during ongoing intravenous heroin self-administration in rats. Concentrations of the inhibitory amino acid GABA in ventral pallidal dialysates were significantly reduced within the first 10 min of heroin self-administration (0.02 mg per infusion; FR-1), and remained ,,65% of presession baseline levels for the remainder of the 3-h self-administration session. Dialysate glutamate levels were unaltered during the first hour of heroin intake but significantly increased to a stable level of ,,120% presession values during the subsequent 2 h of self-administration. Thus, heroin self-administration is associated with both decreased GABA efflux and a late phase increase in glutamate efflux in the ventral pallidum. These observations are consistent with the hypothesis that heroin self-administration results in a disinhibition and/or excitation of the ventral pallidum. [source] Amygdala amino acid and monoamine levels in genetically Fast and Slow kindling rat strains during massed amygdala kindling: a microdialysis studyEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2004Rick S. Shin Abstract We investigated the neurochemistry of epileptic seizures in rats selectively bred to be seizure-prone (Fast) vs. seizure-resistant (Slow) to amygdala kindling. Microdialysis was used to measure levels of amino acids [glutamate, aspartate and gamma-aminobutyric acid (GABA)] and monoamines (noradrenaline, dopamine and serotonin) during ,massed' stimulation (MS) (every 6 min) of the ipsilateral amygdala for a total of 40 stimulation trials. Behavioral seizure profiles together with their afterdischarge thresholds (ADTs) and associated durations were assessed during the procedure, and subsequently were redetermined 1, 7 and 14 days later. Then normal ,daily' kindling commenced and continued until the animal reached the fully kindled state. During MS, several generalized seizures were triggered in Fast rats that were associated with long afterdischarge (AD) durations and intermittent periods of elevated thresholds, but in Slow rats, most stimulations were associated with stable ADTs and short ADs. Progressively increasing extracellular glutamate and decreasing GABA was observed in Fast rats during the MS, whereas Slow rats showed levels similar to baseline values. Levels of noradrenaline and dopamine, but not of serotonin, were also increased in both strains throughout the MS treatment. In Fast rats, a dramatic lengthening of AD durations occurred 7 and 14 days following MS, as well as subsequent strong positive transfer to daily kindling, all of which were not seen in Slow rats. Together, these results show that repeated, closely spaced stimulations of the amygdala can differentially alter excitatory and/or inhibitory transmitter levels in a seizure network, and that sensitivity to this manipulation is genetically determined. [source] GABA selectively controls the secretory activity of oxytocin neurons in the rat supraoptic nucleusEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 3 2004Mario Engelmann Abstract Recently we reported that a single social defeat experience triggers the release of oxytocin (OXT) from somata and dendrites, but not axon terminals, of neurons of the hypothalamic,neurohypophysial system. To further investigate the regulatory mechanisms underlying this dissociated release, we exposed male Wistar rats to a 30-min social defeat and monitored release of the inhibitory amino acids gamma amino butyric acid (GABA) and taurine within the hypothalamic supraoptic nucleus (SON) using microdialysis. Social defeat caused a significant increase in the release of both GABA and taurine within the SON (up to 480%; P < 0.01 vs. prestress release). To reveal the physiological significance of centrally released GABA, the specific GABAA -receptor antagonist bicuculline (0.02 mm) was administered into the SON via retrodialysis. This approach caused a significant increase in the release of OXT both within the SON and into the blood under basal conditions and during stress (up to 300 and 200%, respectively; P < 0.05 vs. basal values), without affecting plasma vasopressin. Electrophysiological studies confirmed the selective action of bicuculline on the firing activity of OXT neurons in the SON. Taken together, our data demonstrate that GABA is released within the SON during emotional stress to act as a selective inhibitor of both central and peripheral OXT secretion. [source] Effects of nicotine in the dopaminergic system of mice lacking the alpha4 subunit of neuronal nicotinic acetylcholine receptorsEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 7 2003L. M. Marubio Abstract The mesostriatal dopaminergic system influences locomotor activity and the reinforcing properties of many drugs of abuse including nicotine. Here we investigate the role of the ,4 nicotinic acetylcholine receptor (nAChR) subunit in mediating the effects of nicotine in the mesolimbic dopamine system in mice lacking the ,4 subunit. We show that there are two distinct populations of receptors in the substantia nigra and striatum by using autoradiographic labelling with 125I ,-conotoxin MII. These receptors are comprised of the ,4, ,2 and ,6 nAChR subunits and non-,4, ,2, and ,6 nAChR subunits. Non-,4 subunit-containing nAChRs are located on dopaminergic neurons, are functional and respond to nicotine as demonstrated by patch clamp recordings. In vivo microdialysis performed in awake, freely moving mice reveal that mutant mice have basal striatal dopamine levels which are twice as high as those observed in wild-type mice. Despite the fact that both wild-type and ,4 null mutant mice show a similar increase in dopamine release in response to intrastriatal KCl perfusion, a nicotine-elicited increase in dopamine levels is not observed in mutant mice. Locomotor activity experiments show that there is no difference between wild-type and mutant mice in basal activity in both habituated and non-habituated environments. Interestingly, mutant mice sustain an increase in cocaine-elicited locomotor activity longer than wild-type mice. In addition, mutant mice recover from depressant locomotor activity in response to nicotine at a faster rate. Our results indicate that ,4-containing nAChRs exert a tonic control on striatal basal dopamine release, which is mediated by a heterogeneous population of nAChRs. [source] Conditional involvement of striatal serotonin3 receptors in the control of in vivo dopamine outflow in the rat striatumEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 4 2003Grégory Porras Abstract Serotonin3 (5-HT3) receptors can affect motor control through an interaction with the nigrostriatal dopamine (DA) neurons, but the neurochemical basis for this interaction remains controversial. In this study, using in vivo microdialysis, we assessed the hypothesis that 5-HT3 receptor-dependent control of striatal DA release is conditioned by the degree of DA and/or 5-HT neuron activity and the means of DA release (impulse-dependent vs. impulse-independent). The different DA-releasing effects of morphine (1 and 10 mg/kg), haloperidol (0.01 mg/kg), amphetamine (1 and 2.5 mg/kg), and cocaine (10 and 20 mg/kg) were studied in the striatum of freely moving rats administered selective 5-HT3 antagonists ondansetron (0.1 mg/kg) or MDL 72222 (0.03 mg/kg). Neither of the 5-HT3 antagonists modified basal DA release by itself. Pretreatment with ondansetron or MDL 72222 reduced the increase in striatal DA release induced by 10 mg/kg morphine but not by 1 mg/kg morphine, haloperidol, amphetamine or cocaine. The effect of 10 mg/kg morphine was also prevented by intrastriatal ondansetron (1 µm) administration. Reverse dialysis with ondansetron also reduced the increase in DA release induced by the combination of haloperidol and the 5-HT reuptake inhibitor citalopram (1 mg/kg). Considering the different DA and 5-HT-releasing properties of the drugs used, our results demonstrate that striatal 5-HT3 receptors control selectively the depolarization-dependent exocytosis of DA only when central DA and 5-HT tones are increased concomitantly. [source] Rat strain differences in peripheral and central serotonin transporter protein expression and functionEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 3 2003Francesca Fernandez Abstract Female Fischer 344 (F344) rats have been shown to display increased serotonin transporter (5-HTT) gene expression in the dorsal raphe, compared to female Lewis (LEW) rats. Herein, we explored, by means of synaptosomal preparations and in vivo microdialysis, whether central, but also peripheral, 5-HTT protein expression/function differ between strains. Midbrain and hippocampal [3H]paroxetine binding at the 5-HTT and hippocampal [3H]serotonin (5-HT) reuptake were increased in male and female F344 rats, compared to their LEW counterparts, these strain differences being observed both in rats of commercial origin and in homebred rats. Moreover, in homebred rats, it was found that these strain differences extended to blood platelet 5-HTT protein expression and function. Saturation studies of midbrain and hippocampal [3H]paroxetine binding at the 5-HTT, and hippocampal and blood platelet [3H]5-HT reuptake, also revealed significant strain differences in Bmax and Vmax values. Although F344 and LEW rats differ in the activity of the hypothalamo-pituitary-adrenal (HPA) axis, manipulations of that axis revealed that the strain differences in hippocampal [3H]paroxetine binding at 5-HTTs and [3H]5-HT reuptake were not accounted for by corticosteroids. Hippocampal extracellular 5-HT levels were reduced in F344 rats, compared to LEW rats, with the relative, but not the absolute, increase in extracellular 5-HT elicited by the local administration of citalopram being larger in F344 rats. Because the aforementioned strain differences did not lie in the coding sequences of the 5-HTT gene, our results open the promising hypothesis that F344 and LEW strains model functional polymorphisms in the promoter region of the human 5-HTT gene. [source] Behavioural sensitization and enhanced dopamine response in the nucleus accumbens after intravenous cocaine self-administration in miceEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 3 2003Agustin Zapata Abstract The behavioural effects of cocaine are enhanced in animals with a prior history of repeated cocaine administration. This phenomenon, referred to as sensitization, is also associated with an increase in cocaine-evoked extracellular dopamine levels in the nucleus accumbens. Behavioural and neurochemical sensitization has been demonstrated in rats with a prior history of cocaine self-administration and in those that had received experimenter-administered cocaine. Although it is clear that the repeated non-contingent administration also results in behavioural sensitization in the mouse, the issue of whether behavioural and neurochemical sensitization also occur in this species following intravenous cocaine self-administration has not been assessed. The present study used the technique of in vivo microdialysis in conjunction with operant self-administration to characterize cocaine-evoked locomotor activity and dopamine levels in the nucleus accumbens in mice with a prior history of intravenous cocaine self-administration or those that had received yoked infusions of cocaine. Mice that had received contingent or non-contingent infusions of cocaine exhibited an enhanced behavioural response to cocaine and increased cocaine-evoked dopamine levels in the nucleus accumbens. There was no difference between groups in the magnitude of this effect. Prior exposure to cocaine did not modify baseline dopamine levels in the nucleus accumbens. These data demonstrate that mice with previous cocaine self-administration experience show an enhanced behavioural and dopamine response to cocaine in the nucleus accumbens. Furthermore, control over cocaine infusion does not significantly alter the magnitude of the sensitized behavioural and presynaptic dopamine responses observed in response to a challenge dose of cocaine. [source] |