Home About us Contact | |||
Microcystins
Terms modified by Microcystins Selected AbstractsBioaccumulation of the hepatotoxic microcystins in various organs of a freshwater snail from a subtropical Chinese Lake, Taihu Lake, with dense toxic Microcystis bloomsENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 1 2007Dawen Zhang Abstract In this paper, we describe the seasonal dynamics of three common microcystins (MCs; MC-RR, MC-YR, and MC-LR) in the whole body, hepatopancreas, intestine, gonad, foot, remaining tissue, and offspring of a freshwater snail, Bellamya aeruginosa, from Gonghu Bay of Lake Taihu, China, where dense toxic Microcystis blooms occur in the warm seasons. Microcystins were determined by liquid chromatography electrospray ionization mass spectrum. Microcystin (MC-RR + MC-YR + MC-LR) content of the offspring and gonad showed high positive correlation, indicating that microcystins could transfer from adult females to their young with physiological connection. This study is the first to report the presence of microcystins in the offspring of the adult snail. The majority of the toxins were present in the intestine (53.6%) and hepatopancreas (29.9%), whereas other tissues contained only 16.5%. If intestines are excluded, up to 64.3% of the toxin burden was allocated in the hepatopancreas. The microcystin content in the intestine, hepatopancreas, and gonad were correlated with the biomass of Microcystis and intracellular and extracellular toxins. Of the analyzed foot samples, 18.2% were above the tolerable daily microcystin intake recommended by the World Health Organization (WHO) for human consumption. This result indicates that public health warnings regarding human ingestion of snails from Taihu Lake are warranted. In addition, further studies are needed to evaluate the occurrence by Microcystis in relation to spatial and temporal changes in water quality. [source] Side-by-Side and End-to-End Gold Nanorod Assemblies for Environmental Toxin Sensing,ANGEWANDTE CHEMIE, Issue 32 2010Libing Wang Parallel oder schräg geparkt: Goldnanostäbe (siehe Bild) wurden selektiv entweder an den Seiten oder an den Enden mit komplementärem Microcystin(MC-LR)-Antikörper und -Antigen (blau) modifiziert. Mit diesen Assoziaten ließ sich MC-LR (grün) schnell nachweisen, und die Empfindlichkeits- wie Nachweisbereiche waren bei der Kopf-Schwanz-Verknüpfung (rechts) deutlich besser als bei der Seitenverknüpfung (links). [source] In vivo exposure to microcystins induces DNA damage in the haemocytes of the zebra mussel, Dreissena polymorpha, as measured with the comet assayENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 1 2007Guillaume Juhel Abstract The Comet assay was used to investigate the potential of the biotoxin microcystin (MC) to induce DNA damage in the freshwater zebra mussel, Dreissena polymorpha. Mussels maintained in the laboratory were fed daily, over a 21-day period, with one of four strains of the cyanobacterium, Microcystis aeruginosa. Three of the strains produced different profiles of MC toxin, while the fourth strain did not produce MCs. The mussels were sampled at 0, 7, 14, and 21 days by withdrawing haemocytes from their adductor muscle. In addition, a positive control was performed by exposing a subsample of the mussels to water containing cadmium chloride (CdCl2). Cell viability, measured with the Fluorescein Diacetate/Ethidium Bromide test, indicated that the MC concentrations, to which the mussels were exposed, were not cytotoxic to the haemocytes. The Comet assay performed on the haemocytes indicated that exposure to CdCl2 produced a dose-responsive increase in DNA damage, demonstrating that mussel haemocytes were sensitive to DNA-damaging agents. DNA damage, measured as percentage tail DNA (%tDNA), was observed in mussels exposed to the three toxic Microcystis strains, but not in mussels exposed to the nontoxic strain. Toxin analysis of the cyanobacterial cultures confirmed that the three MC-producing strains exhibit different toxin profiles, with the two MC variants detected being MC-LF and MC-LR. Furthermore, the DNA damage that was observed appeared to be strain-specific, with high doses of MC-LF being associated with a higher level of genotoxicity than low concentrations of MC-LR. High levels of MC-LF also seemed to induce relatively more persistent DNA damage than small quantities of MC-LR. This study is the first to demonstrate that in vivo exposure to MC-producing strains of cyanobacteria induces DNA damage in the haemocytes of zebra mussels and confirms the sublethal toxicity of these toxins. Environ. Mol. Mutagen., 2007. © 2006 Wiley-Liss, Inc. [source] Culture-independent evidence for the persistent presence and genetic diversity of microcystin-producing Anabaena (Cyanobacteria) in the Gulf of FinlandENVIRONMENTAL MICROBIOLOGY, Issue 4 2009David P. Fewer Summary The late summer mass occurrences of cyanobacteria in the Baltic Sea are among the largest in the world. These blooms are rarely monotypic and are often composed of a diverse assemblage of cyanobacteria. The toxicity of the blooms is attributed to Nodularia spumigena through the production of the hepatotoxic nodularin. However, the microcystin hepatotoxins have also been reported from the Baltic Sea on a number of occasions. Recent evidence links microcystin production in the Gulf of Finland directly to the genus Anabaena. Here we developed a denaturing gradient gel electrophoresis (DGGE) method based on the mcyE microcystin synthetase gene and ndaF nodularin synthetase gene that allows the culture-independent discrimination of microcystin- and nodularin-producing cyanobacteria directly from environmental samples. We PCR-amplified microcystin and nodularin synthetase genes from environmental samples taken from the Gulf of Finland and separated them on a denaturing gradient gel using optimized conditions. Sequence analyses demonstrate that uncultured microcystin-producing Anabaena strains are genetically more diverse than previously demonstrated from cultured strains. Furthermore, our data show that microcystin-producing Anabaena are widespread in the open Gulf of Finland. Non-parametric statistical analysis suggested that salinity plays an important role in defining the distribution of microcystin-producing Anabaena. Our results indicate that microcystin-producing blooms are a persistent phenomenon in the Gulf of Finland. [source] Towards clarification of the biological role of microcystins, a family of cyanobacterial toxinsENVIRONMENTAL MICROBIOLOGY, Issue 4 2007Daniella Schatz Summary Microcystins constitute a serious threat to the quality of drinking water worldwide. These protein phosphatase inhibitors are formed by various cyanobacterial species, including Microcystis sp. Microcystins are produced by a complex microcystin synthetase, composed of peptide synthetases and polyketide synthases, encoded by the mcyA-J gene cluster. Recent phylogenetic analysis suggested that the microcystin synthetase predated the metazoan lineage, thus dismissing the possibility that microcystins emerged as a means of defence against grazing, and their original biological role is not clear. We show that lysis of Microcystis cells, either mechanically or because of various stress conditions, induced massive accumulation of McyB and enhanced the production of microcystins in the remaining Microcystis cells. A rise in McyB content was also observed following exposure to microcystin or the protease inhibitors micropeptin and microginin, also produced by Microcystis. The extent of the stimulation by cell extract was strongly affected by the age of the treated Microcystis culture. Older cultures, or those recently diluted from stock cultures, hardly responded to the components in the cell extract. We propose that lysis of a fraction of the Microcystis population is sensed by the rest of the cells because of the release of non-ribosomal peptides. The remaining cells respond by raising their ability to produce microcystins thereby enhancing their fitness in their ecological niche, because of their toxicity. [source] Microcystin extracts induce ultrastructural damage and biochemical disturbance in male rabbit testisENVIRONMENTAL TOXICOLOGY, Issue 1 2010Ying Liu Abstract In the present research, the changes of ultrastructures and biochemical index in rabbit testis were examined after i.p. injection with 12.5 ,g/kg microcystin (MC) extracts. Ultrastructural observation showed widened intercellular junction, distention of mitochondria, endoplasmic reticulum, and Golgi apparatus. All these changes appeared at 1, 3, and 12 h, but recovered finally. In biochemical analyses, the levels of lipid peroxidation (MDA) and H2O2 increased significantly at 1 h, indicating MC-caused oxidative stress. Finally, H2O2 decreased to the normal levels, while MDA remained at high levels. The antioxidative enzymes (CAT, SOD, GPx, GST) and antioxidants (GSH) also increased rapidly at 1 h, demonstrating a quick response of the defense systems to the oxidative stress. Finally, the activity of CAT, SOD, and GPX recovered to the normal level, while the activity of GST and the concentration of GSH remained at a high level. This suggests that the importance of MCs detoxification by GST via GSH, and the testis of rabbit contained abundant GSH. The final recovery of ultrastructure and some biochemical indexes indicates that the defense systems finally succeeded in protecting the testis against oxidative damage. In conclusion, these results indicate that the MCs are toxic to the male rabbit reproductive system and the mechanism underlying this toxicity might to be the oxidative stress caused by MCs. Although the negative effects of MCs can be overcome by the antioxidant system of testis in this study, the potential reproductive risks of MCs should not be neglected because of their wide occurrence. © 2009 Wiley Periodicals, Inc. Environ Toxicol 2010. [source] Influence of intracellular Ca2+, mitochondria membrane potential, reactive oxygen species, and intracellular ATP on the mechanism of microcystin-LR induced apoptosis in Carassius auratus lymphocytes in vitroENVIRONMENTAL TOXICOLOGY, Issue 6 2007H. Zhang Abstract Microcystin-LR (MCLR), the most toxic microcystin up to date, could induce apoptosis in many kinds of fish and mammalian cells. For the fish immunotoxicity, it was found that MCLR could induce apoptosis in Carassius auratus lymphocytes in vitro. So this study focused on the role of intracellular Ca2+, mitochondrial membrane potential, reactive oxygen species (ROS), and intracellular ATP in response to the mechanisms of MCLR-induced apoptosis in fish lymphocytes. MCLR (10 nM) administration resulted in a massive elevation in ROS, intracellular Ca2+, decreased ATP, and rapid mitochondrial membrane potential (,,m) disruption. When compared to controls, both a fourfold significant (P < 0.001) elevation in O2, in 1.5 h and an approximately twofold increase in Ca2+ in 0.5 h were observed. After 6 h of treatment, an approximately 30% decrease for ,,m but about 75% decline for ATP were found. Together, the results demonstrated that MCLR-induced apoptosis was associated with a massive calcium influx, resulting in O2, elevation, ,,m disruption, and ATP depletion. This study provided a possible cytotoxic mechanism of fish lymphocytes caused by MCLR. © 2007 Wiley Periodicals, Inc. Environ Toxicol 22: 559,564, 2007. [source] Hepatoprotective efficacy of certain flavonoids against microcystin induced toxicity in miceENVIRONMENTAL TOXICOLOGY, Issue 5 2007R. Jayaraj Abstract Toxic cyanobacteria (blue-green algae) water blooms have become a serious problem in several industrialized areas of the world. Microcystin-LR (MC-LR) is a cyanobacterial heptapeptide that represents acute and chronic hazards to animal and human health. Identification of suitable chemprotectants against microcystin is essential considering human health hazards. In the present study, we have evaluated the protective efficacy of three flavanoids namely quercetin (200 mg/kg), silybin (400 mg/kg), and morin (400 mg/kg)] pretreatment against microcystin toxicity (0.75 LD50, 57.5 ,g/kg) in mice. Various biochemical variables were measured to study the recovery profile of protected animals at 1- and 3-days post-toxin treatment. The serum alanine amino transferase (ALT) shows 17-fold increase in MC-LR treated animals compared with control group at 1 day. The silybin and quercetin group showed a decrease in level of ALT compared with MC-LR group but still higher than control group. No significant protection was observed with aspartate aminotransaminase (AST) and lactate dehydrogenase (LDH) levels in flavanoid-treated groups at 1-day post-treatment. But at 3 days, the serum levels of AST and ALT were normalized to control values, but the serum LDH levels were still significantly higher than the control group. No significant changes were observed in glutathione peroxidase and reduced glutathione levels at both 1- and 3-day postexposure. The catalase activity shows a significant decrease in quercetin-treated animals at 3-day postexposure. The protein phosphatase was significantly inhibited in MC-LR group compared to control. The silybin pretreated group showed recovery after 1 day. At 3 days, the PPAse activity was reversed to control values in all the flavanoid-treated groups. Immunoblotting analysis showed microcystin-PPAse adduct in liver tissues of toxin-treated as well as flavanoid-treated mice even after 3 days. The results of this study show that flavanoids, quercetin, silybin, and morin could reverse the hepatotoxic effects of MC-LR in vivo. © 2007 Wiley Periodicals, Inc. Environ Toxicol 22: 472,479, 2007. [source] Seasonal dynamics of the hepatotoxic microcystins in various organs of four freshwater bivalves from the large eutrophic lake Taihu of subtropical China and the risk to human consumptionENVIRONMENTAL TOXICOLOGY, Issue 6 2005Jun Chen Abstract So far, little is known on the distribution of hepatotoxic microcystin (MC) in various organs of bivalves, and there is no study on MC accumulation in bivalves from Chinese waters. Distribution pattern and seasonal dynamics of MC-LR, -YR and -RR in various organs (hepatopancreas, intestine, visceral mass, gill, foot, and rest) of four edible freshwater mussels (Anodonta woodiana, Hyriopsis cumingii, Cristaria plicata, and Lamprotula leai) were studied monthly during Oct. 2003,Sep. 2004 in Lake Taihu with toxic cyanobacterial blooms in the summer. Qualitative and quantitative determinations of MCs in the organs were done by LC,MS and HPLC. The major toxins were present in the hepatopancreas (45.5,55.4%), followed by visceral mass with substantial amount of gonad (27.6,35.5%), whereas gill and foot were the least (1.8,5.1%). The maximum MC contents in the hepatopancreas, intestine, visceral mass, gill, foot, and rest were 38.48, 20.65, 1.70, 0.64, 0.58, and 0.61 ,g/g DW, respectively. There were rather good positive correlation in MC contents between intestines and hepatopancreas of the four bivalves (r = 0.75,0.97, p < 0.05). There appeared to be positive correlations between the maximum MC content in the hepatopancreas and the ,13C (r = 0.919) or ,15N (r = 0.878) of the foot, indicating that the different MC content in the hepatopancreas might be due to different food ingestion. A glutathione (GSH) conjugate of MC-LR was also detected in the foot sample of C. plicata. Among the foot samples analyzed, 54% were above the provisional WHO tolerable daily intake (TDI) level, and the mean daily intakes from the four bivalves were 8,23.5 times the TDI value when the bivalves are eaten as a whole, suggesting the high risk of consuming bivalves in Lake Taihu. © 2005 Wiley Periodicals, Inc. Environ Toxicol 20: 572,584, 2005. [source] Genetic diversity of the toxic cyanobacterium Microcystis in Lake MikataENVIRONMENTAL TOXICOLOGY, Issue 3 2005Mitsuhiro Yoshida Abstract The aim of the present study was to clarify the bloom dynamics and community composition of hepatotoxin microcystin-producing and non-microcystin-producing Microcystis genotypes in the environment. In Lake Mikata (Fukui, Japan) from April 2003 to January 2004, seasonal variation in the number of cells with microcystin (mcy) genotypes and the genetic diversity of the total population were investigated using quantitative competitive PCR and a 16S rDNA clone library, respectively. Using competitive PCR, cells with mcyA genotypes were quantified in August and October, and the ratio of the number of these mcyA genotypes to colony-forming Microcystis cells was 0.37 and 2.37, respectively. The 16S rDNA clones obtained could be divided into 12 ribotypes: a,l. Sixty-one Microcystis strains isolated from Lake Mikata during the sampling period were subjected to toxicity tests using HPLC and ELISA, PCR-based detection of the mcyA gene, and sequence analysis of the 16S rDNA. All isolates could be differentiated into 11 ribotypes (a, b, d, f, h, i, and m,q). Ribotypes b, f, i, m, n, and p had at least one strain that was a microcystin producer. In natural communities ribotypes b and f accounted for 85% of the 16S rDNA clones in August, and ribotypes b and i accounted for 24% of the clones in October. Thus, in some bloom stages the presence of microcystin genotypes identified using the 16S rDNA clone library correlated with that of mcy genotypes determined using competitive PCR. © 2005 Wiley Periodicals, Inc. Environ Toxicol 20: 229,234, 2005. [source] Chronic toxicity and responses of several important enzymes in Daphnia magna on exposure to sublethal microcystin-LRENVIRONMENTAL TOXICOLOGY, Issue 3 2005Wei Chen Abstract In the current study, the toxicological mechanisms of microcystin-LR and its disadvantageous effects on Daphnia magna were examined. Survival rate, number of newborn, activity of several important enzymes [glutathione S-transferase (GST), lactate dehydrogenase (LDH), phosphatases, and glutathione], accumulated microcystins, and ultrastructural changes in different organs of Daphnia were monitored over the course of 21-day chronic tests. The results indicated that low concentrations of dissolved microcystin had no harmful effect on Daphnia. On the contrary, stimulatory effects were detected. In the presence of toxin at high dosage and for long-term exposure, GST and glutathione levels decreased significantly. The decreased enzyme activity in the antioxidant system probably was caused by detoxification reactions with toxins. And these processes of detoxification at the beginning of chronic tests may enable phosphatases in Daphnia magna to withstand inhibition by the toxins. At the same time, we also found that the LDH activity in test animals increased with exposure to microcystin-LR, indicating that adverse effects occurred in Daphnia. With microcystin given at a higher dosage or for a longer exposure, the effect on Daphnia magna was fatal. In the meantime, microcystin began to accumulate in Daphnia magna, and phosphatase activity started to be inhibited. From the ultrastructure results of cells in D. magna, we obtained new information: the alimentary canal may be the target organ affected by exposure of microcystins to D. magna. The results of the current study also suggested that the oxidative damage and PPI (protein phosphatase inhibition) mechanisms of vertebrates also are adapted to Daphnia. © 2005 Wiley Periodicals, Inc. Environ Toxicol 20: 323,330, 2005. [source] Occurrence of toxic cyanobacterial blooms in San Roque Reservoir (Córdoba, Argentina): A field and chemometric studyENVIRONMENTAL TOXICOLOGY, Issue 3 2003Marķa Valeria Amé Abstract We evaluated the presence of cyanobacterial blooms in San Roque Reservoir (Córdoba, Argentina). Cyanobacterial blooms and water samples were collected over 4 years (1998,2002). We confirmed the presence of microcystin-LR and microcystin-RR in 97% of these blooms. The total amount of microcystin (MC) ranged between 5.8 and 2400.0 ,g g,1 of freeze-dried bloom material. These values suggest that guidelines for safe water consumption and recreational use should be established for this reservoir. Twenty-eight physical and chemical parameters were measured in water samples and evaluated by discriminant analysis (DA). A first DA was used to evaluate the factors promoting cyanobacteria occurrence, identifying nine parameters following three patterns associated with cyanobacterial growth. Inorganic phosphorous was found to promote the presence of blooms, whereas the highest proliferation of cyanobacteria was observed in the presence of smaller amounts of carbonate, bicarbonate, sulfate, and fecal coliform bacteria. The results observed during our fieldwork, analyzed using DA, agreed with the results of other laboratory studies, thus confirming the usefulness of DA to help with the evaluation of a complicated environmental data matrix. A second DA, using only water samples collected during the presence of cyanobacteria blooms, identified another nine parameters. The analysis of these parameters allowed us to identify certain environmental factors that could lead to the dominance of toxic strains, thus increasing the amount of MC. The results showed that, in our case, an increase in the water temperature was associated with higher amounts of MC per dry weight unit, whereas an increase in the concentrations of ammonia,nitrogen and iron were associated with lower amounts of MC, thus disfavoring the dominance of toxic strains. © 2003 Wiley Periodicals, Inc. Environ Toxicol 18: 192,201, 2003. [source] The effects of dietary Microcystis aeruginosa and microcystin on the copepods of the upper San Francisco EstuaryFRESHWATER BIOLOGY, Issue 7 2010KEMAL A. GER Summary 1. Increasing blooms of Microcystis aeruginosa have unknown impacts on the copepods Eurytemora affinis and Pseudodiaptomus forbesi, which are the dominant zooplankters and key prey species for endangered larval fish in the upper San Francisco Estuary. 2. Laboratory feeding experiments were designed to measure the effect of Microcystis on copepod survival and to distinguish the effects of toxicity and nutrition. In a series of survival tests, copepods were fed a mixed diet of algae plus one of two strains of Microcystis, either producing (MC+) or lacking microcystin (MC,). 3. Microcystis significantly reduced survival even when it was a small proportion of the diet, indicating that toxicity was the major cause of mortality. Contrary to expectation, however, the MC+ strain did not result in higher mortality, suggesting that non-MC metabolites of Microcystis can be toxic to copepods. 4. Across treatments, survival of P. forbesi was greater than that of E. affinis, although the two copepods responded differently to both the ratio and the strain of Microcystis in their food. Survival of P. forbesi was greater on the MC+ strain and was inversely proportional to the ratio of dietary Microcystis (MC+ or MC,). In contrast, survival of E. affinis declined similarly across treatments and was not related to the proportion or strain of dietary Microcystis. Results indicate that the copepod P. forbesi can coexist with Microcystis while the other copepod E. affinis cannot. 5. Regardless of species, dietary Microcystis caused significant mortality to copepods, and it may cause adverse impacts to the potentially food-limited zooplankton community of the San Francisco Estuary. These impacts may not be related to the cellular MC concentration because Microcystis contains other metabolites that negatively affect copepods. [source] Lack of teratogenicity of microcystin-LR in the mouse and toadJOURNAL OF APPLIED TOXICOLOGY, Issue 1 2002N. Chernoff Abstract Microcystin-LR (MC-LR) is a cyanobacterial toxin generated by the organism Microcystis aeruginosa. Although the hepatotoxicity of this chemical has been characterized, the potential developmental toxicity in vertebrates has not been well studied. The purpose of this study was to elucidate the effects of this toxin on the in vivo and in vitro development of mammals and the development of an Anuran (toad). Initial acute toxicity experiments with female CD-1 mice were accomplished with MC-LR administered i.p. in saline. Lethality occurred at 128 and 160 µg kg ,1 and histopathology revealed massive hepatic necrosis with diffuse hemorrhage. Developmental toxicity studies were done with MC-LR administered i.p. for 2-day periods: gestation days 7,8, 9,10 or 11,12. Doses used ranged from 2 to 128 µg kg,1. On gestation day 17, fetuses were weighed and analyzed for gross morphological and skeletal defects. No treatment-related differences were seen in litter size, viability, weight or the incidence of anomalies. Groups of dams dosed with 32,128 µg kg,1 on gestation days 7,8, 9,10 or 11,12 were allowed to give birth and the growth and development of their pups were followed postnatally. There were no significant effects noted in the offspring of the treated dams. Neurulation-staged CD-1 mouse conceptuses were exposed to 50,1000 nM MC-LR in whole embryo culture for 24 h. No significant increase in abnormalities or developmental delays was observed. Finally, exposure of the developing toad. Bufo arenarum was done from stage 17 (tail bud) for 10 days at concentrations of 1,20 mg l,1. No effect on morphological development or survival was noted in any exposed groups. These data indicate that microcystin does not appear to affect development adversely in the mouse (in vivo or in vitro) or the toad at the doses and exposure parameters used. Copyright © 2002 John Wiley & Sons, Ltd. [source] MICROALGAE AND CYANOBACTERIA: FOOD FOR THOUGHT,JOURNAL OF PHYCOLOGY, Issue 2 2008Miroslav Gantar In non-Western civilizations, cyanobacteria have been part of the human diet for centuries. Today, microalgae and cyanobacteria are either produced in controlled cultivation processes or harvested from the natural habitats and marketed as food supplements around the world. Cyanobacteria produce a vast array of different biologically active compounds, some of which are expected to be used in drug development. The fact that some of the active components from cyanobacteria potentially have anticancer, antimicrobial, antiviral, anti-inflammatory, and other effects is being used for marketing purposes. However, introduction of these products in the form of whole biomass for alimentary purposes raises concerns regarding the potential toxicity and long-term effects on human health. Here, we review data on the use of cyanobacteria and microalgae in human nutrition and searched for available information on legislature that regulates the use of these products. We have found that, although the quality control of these products is most often self-regulated by the manufacturers, different governmental agencies are introducing strict regulations for placing novel products, such as algae and cyanobacteria, on the market. The existing regulations require these products to be tested for the presence of toxins, such as microcystin; however, other, sometimes novel, toxins remain undetected, and their long-term effects on human health remain unknown. [source] POPULATION DYNAMICS AND THE TOXICITY OF BLUE-GREEN ALGAE IN THE NAKTONG RIVER, KOREAJOURNAL OF PHYCOLOGY, Issue 2001Article first published online: 24 SEP 200 Lee, J. A.1, Choi, A. R.1, Park, J. H.1 & Chung, I. K2 1Department of Environmental Science, Inje University, Kimhae 621-749, Korea; 2Departement of Marine Science, Pusan National University, Pusan 609-735, Korea Seasonal and spatial variations of phytoplankton community were monitored at 16 sites along the Naktong River. Blue-green algae appeared from May through November with dominant genera of Microcystis, Anabaena, Oscillatoria and Gomphosphaeria. Frequency and biomass of the genera became greater at lower reaches. The Microcystis were observed from May to October up to 85,750cells/ml. Six species of Microcystis were identified with morphological characteristics and M. aeruginosa was most dominant. There were significant relationships between biomass of Microcystis and NO -3, TP and pH in water column. However, NH4+, PO4 -3 and N/P were not critical in successions to the Microcystis dominated community. Microcystis blooms were notable at water temperature higher than 25°C. Microcystis density in sediment was 3 orders of magnitude higher than water column. Anabaena density ranged up to 11,220cells/ml. Four species of Anabaena were identified and A. flos-aquae was most dominant. Anabaena biomass was not related to temperature, NO3 - , TN, PO4 -3, TP and N/P of water column and the frequency of trichome with akinete and/or heterocyte were not related to these parameters. Microcystins were detected from May to November with yearly fluctuations. Microcystin-RR was most dominant. Total 84.2% of algal materials with Microcystis exhibited toxicity of microcystin with maximum of 3,292,g/g dry wt. Total 12.5% of water column with Microcystis exhibited dissolved microcystin up to 3.3,g/l. Microcystin concentrations were positively related to Microcystis biomass and pH of water column. Anatoxin-a was determined by FD-HPLC analysis with NBD-F and all concentrations were below the detection limit of 0.1,g/l. [source] Complete assignment of the NMR spectra of [D -Leu1]-microcystin-LR and analysis of its solution structureMAGNETIC RESONANCE IN CHEMISTRY, Issue 9 2002Jan Schripsema Abstract [D -Leu1]-microcystin-LR is a recently discovered microcystin. We report the isolation of this microcystin analogue from a Microcystis aeruginosa strain isolated from the Lagoa de Iquipari, Rio de Janeiro, Brazil. The 1H and 13C NMR spectra were completely assigned in both MeOH- d4 and DMSO- d6. Further, the solution structure of this compound was investigated with the use of two-dimensional NMR and the amide proton temperature dependence, and was compared with those of its analogs, microcystin-RR and microcystin-LR. Copyright © 2002 John Wiley & Sons, Ltd. [source] A Novel Cyanobacterial Nostocyclopeptide is a Potent Antitoxin against MicrocystinsCHEMBIOCHEM, Issue 11 2010Jouni Jokela Abstract Cyanobacterial hepatotoxins (microcystins and nodularins) cause numerous animal poisonings worldwide each year and are threats to human health. However, we found that extracts from several cyanobacteria isolates failed to induce hepatotoxicity even if they contained high concentrations of the liver toxin microcystin. The antitoxic activity abolishes all morphological hallmarks of microcystin-induced apoptosis, and therefore invalidates cell-based assays of the microcystin content of bloom-forming cyanobacteria. The antitoxin was purified from a cyanobacterial isolate (Nostoc sp. XSPORK 13A) from the Baltic Sea, and the activity was shown to reside in a novel cyclic peptide of the nostocyclopeptide family (nostocyclopeptide M1, Ncp-M1) that consists of seven amino acids (Tyr1 -Tyr2 - D -HSe3 - L -Pro4 - L -Val5 -(2S,4S)-4-MPr6 -Tyr7; MW=881) with an imino linkage between Tyr1 and Tyr7. Ncp-M1 did not compete with labelled microcystin for binding to protein phosphatase 2A; this explains why the antitoxin did not interfere with phosphatase-based microcystin assays. Currently used agents that interfere with microcystin action, such as inhibitors of ROS formation, microcystin uptake and Cam-kinase activity, are themselves inherently toxic. Since Ncp-M1 is potent and nontoxic it promises to become a useful mechanistic tool as soon as its exact cellular target is elucidated. [source] Towards clarification of the biological role of microcystins, a family of cyanobacterial toxinsENVIRONMENTAL MICROBIOLOGY, Issue 4 2007Daniella Schatz Summary Microcystins constitute a serious threat to the quality of drinking water worldwide. These protein phosphatase inhibitors are formed by various cyanobacterial species, including Microcystis sp. Microcystins are produced by a complex microcystin synthetase, composed of peptide synthetases and polyketide synthases, encoded by the mcyA-J gene cluster. Recent phylogenetic analysis suggested that the microcystin synthetase predated the metazoan lineage, thus dismissing the possibility that microcystins emerged as a means of defence against grazing, and their original biological role is not clear. We show that lysis of Microcystis cells, either mechanically or because of various stress conditions, induced massive accumulation of McyB and enhanced the production of microcystins in the remaining Microcystis cells. A rise in McyB content was also observed following exposure to microcystin or the protease inhibitors micropeptin and microginin, also produced by Microcystis. The extent of the stimulation by cell extract was strongly affected by the age of the treated Microcystis culture. Older cultures, or those recently diluted from stock cultures, hardly responded to the components in the cell extract. We propose that lysis of a fraction of the Microcystis population is sensed by the rest of the cells because of the release of non-ribosomal peptides. The remaining cells respond by raising their ability to produce microcystins thereby enhancing their fitness in their ecological niche, because of their toxicity. [source] Contrasting microcystin production and cyanobacterial population dynamics in two Planktothrix -dominated freshwater lakesENVIRONMENTAL MICROBIOLOGY, Issue 10 2005Ingmar Janse Summary Microcystin concentrations in two Dutch lakes with an important Planktothrix component were related to the dynamics of cyanobacterial genotypes and biovolumes. Genotype composition was analysed by using denaturing gradient gel electrophoresis (DGGE) profiling of the intergenic transcribed spacer region of the rrn operon (rRNA-ITS), and biovolumes were measured by using microscopy. In Lake Tjeukemeer, microcystins were present throughout summer (maximum concentration 30 µg l,1) while cyanobacterial diversity was low and very constant. The dominant phototroph was Planktothrix agardhii. In contrast, Lake Klinckenberg showed a high microcystin peak (up to 140 µg l,1) of short duration. In this lake, cyanobacterial diversity was higher and very dynamic with apparent genotype successions. Several genotypes derived from DGGE field profiles matched with genotypes from cultures isolated from field samples. The microcystin peak measured in Lake Klinckenberg could be confidently linked to a bloom of Planktothrix rubescens, as microscopic and genotypic analysis showed identity of bloom samples and a toxin-producing P. rubescens culture. Toxin-producing genotypes were detected in the microbial community before they reached densities at which they were detected by using microscopy. Cyanobacterial biovolumes provided additional insights in bloom dynamics. In both lakes, the microcystin content per cell was highest at the onset of the blooms. Our results suggest that while genotypic characterization of a lake can be valuable for detection of toxic organisms, for some lakes a monitoring of algal biomass has sufficient predictive value for an assessment of toxin production. [source] A new morphospecies of Microcystis sp. forming bloom in the Cheffia dam (Algeria): Seasonal variation of microcystin concentrations in raw water and their removal in a full-scale treatment plantENVIRONMENTAL TOXICOLOGY, Issue 4 2007Hichčm Nasri Abstract Toxic cyanobacterial blooms are an increasing problem in Algeria. The production of cyanotoxins (microcystins) and their presence in drinking water represent growing hazards to human health. In this study, seasonal variations in the concentrations of total microcystins and physicochemical parameters (pH, temperature, dissolved oxygen, nitrate, orthophosphate, and chlorophyll- a) were analyzed in the Cheffia dam (Algeria), mainly used to supply drinking water. The removal of cyanobacterial cells and microcystins was also evaluated in full-scale plant associated with the Cheffia reservoir. The levels of microcystins (MCYSTs) in both raw and drinking water were evaluated using the protein phosphatase type 2A (PP2A) inhibition test as MCYST-LR equivalents. Identification of microcystin variants was achieved by LC/MS/MS. During the period of study (March,December 2004), microscopic observation showed the dominance in the autumn months (September,November) of a new morphospecies of Microcystis sp. The MCYST-LR equivalent concentrations in raw water varied between 50.8 and 28,886 ng L,1. The highest level of toxins was observed in October 2004 and was significantly correlated with the chlorophyll- a. Three variants of microcystins assigned as microcystin-YR (MCYST-YR), microcystin-LR (MCYST-LR), and 6Z -Adda stereoisomer of MCYST-LR were observed in the crude extract of the Microcystis sp. bloom sample. During the bloom period, total elimination of Microcystis sp. and toxins were achieved through a classical treatment plant comprised of coagulation and flocculation, powdered activated carbon at 15 mg L,1, slow sand filtration and chlorination before storage. © 2007 Wiley Periodicals, Inc. Environ Toxicol 22: 347,356, 2007. [source] Sampling and analysis of microcystins: Implications for the development of standardized methodsENVIRONMENTAL TOXICOLOGY, Issue 2 2007Angeline R. Tillmanns Abstract Microcystins (MC), a group of cyanotoxins, have been found in lakes and rivers worldwide. One goal of MC research is to develop models which predict MC concentrations, but these efforts have been hampered by a lack of standardized methods necessary for comparing data across studies. Here, we investigate the effect of chemical analysis (HPLC-PDA and ELISA), sample collection (whole water, plankton tow and surface scum), and choice of normalizing parameter (volume, dry weight, and chlorophyll a) on reported MC concentrations. Samples were collected over three years from a temperate mesotrophic, shallow lake with episodic blooms of cyanobacteria. We found that microcystins were up to four times higher in lake samples when analyzed by ELISA relative to HPLC-PDA and that MC concentration measured by HPLC explained less than half of the variation in MC concentrations measured by ELISA. Also, samples collected by plankton tow gave consistently higher concentrations than whole water samples. An additional HPLC analysis of two chlorophyte cultures revealed the presence of compounds with a similar UV absorbance spectrum to MC-LR, suggesting that identifying MC based solely on UV absorbance is not valid. Our results document the discrepancy in MC concentrations that can arise by using different methods throughout all stages of sampling, analysis, and reporting of MC concentrations. © 2007 Wiley Periodicals, Inc. Environ Toxicol 22: 132,143, 2007. [source] Summer changes in cyanobacterial bloom composition and microcystin concentration in eutrophic Czech reservoirsENVIRONMENTAL TOXICOLOGY, Issue 3 2006Petr Znachor Abstract In mid-July and August 2003 and 2004, 18 reservoirs in the Czech Republic were sampled for phytoplankton species composition and concentration of intracellular microcystins (MCs). As a consequence of high nutrient loading, most of the reservoirs experienced cyanobacterial blooms of various intensities, with the prevalence of cyanobacteria increasing markedly in August, along with a conspicuous shift in species composition toward dominance of Microcystis spp. Microcystins were detected in 90% of the samples, and their amount also increased considerably in August, reflecting the cyanobacterial biomass. In Microcystis -dominated samples, a significantly higher amount of MCs (p < 0.001) occurred than in samples in which other taxa prevailed. Microcystins were positively correlated with chlorophyll a and cyanobacterial biovolume (p < 0.05, R2 = 0.61 and 0.66, respectively), with the strongest correlation found for Microcystis spp. biovolume (p < 0.001, R2 = 0.87). This taxon was the most important producer of MCs in Czech reservoirs. The main structural variants of MCs were MC-LR, MC-RR, and MC-YR. This study's data also indicate that the relative share of MC variants (MC-LR and MC-RR) varies considerably with time, most likely as a consequence of different species and strain compositions during the summer. This study clearly demonstrates a high prevalence of MC-producing cyanobacteria in Czech reservoirs. Therefore, regular monitoring of these reservoirs is highly desirable in an effort to minimize potential health risks to the human population. © 2006 Wiley Periodicals, Inc. Environ Toxicol 21: 236,243, 2006. [source] Attenuating effects of natural organic matter on microcystin toxicity in zebra fish (Danio rerio) embryos,benefits and costs of microcystin detoxicationENVIRONMENTAL TOXICOLOGY, Issue 1 2006Jimena Cazenave Abstract To contribute to the understanding of joined factors in the environment, impact of pure microcystins (-RR and -LF) on zebra fish (Danio rerio) embryos were investigated individually and in combination with a natural organic matter (NOM). The applied NOM was a reverse osmosis isolate from Lake Schwarzer See (i.e., Black Lake, BL-NOM). Teratogenic effects were evaluated through changes in embryonic development within 48 h of exposure. Detoxication activities were assessed by the activities of phase II biotransformation enzymes, soluble and microsomal glutathione S -transferase (s, mGST). Oxidative stress was assessed by determining both the production of hydrogen peroxide and by analyzing the activities of the antioxidative enzymes, guajacol peroxidase (POD), catalase (CAT), glutathione peroxidase (GPx), and the glutathione restoring enzyme glutathione reductase (GR). Energetic costs were evaluated by determining contents of fat, carbohydrates, and proteins in both exposed and control embryos. BL-NOM attenuated toxic effects of MC-LF and MC-RR verified by less pronounced teratological effects within 24 h, in particular, as well as less rise in the activity of s-GST, when compared with embryos exposed to either pure toxins or in combination with organic matter. BL-NOM also diminished oxidative effects caused by MC-LF; however, it failed to attenuate oxidative stress caused by MC-RR. Content of lipids was significantly reduced in exposed embryos following a trend similar to that obtained with teratological and enzymatic assays confirming the attenuating effect of BL-NOM. Physiological responses to microcystins and NOM required energetic costs, which were compensated to the expense of the energy resources of the yolk, which in turn might affect the normal development of embryos. © 2006 Wiley Periodicals, Inc. Environ Toxicol 21: 22,32, 2006. [source] Seasonal dynamics of the hepatotoxic microcystins in various organs of four freshwater bivalves from the large eutrophic lake Taihu of subtropical China and the risk to human consumptionENVIRONMENTAL TOXICOLOGY, Issue 6 2005Jun Chen Abstract So far, little is known on the distribution of hepatotoxic microcystin (MC) in various organs of bivalves, and there is no study on MC accumulation in bivalves from Chinese waters. Distribution pattern and seasonal dynamics of MC-LR, -YR and -RR in various organs (hepatopancreas, intestine, visceral mass, gill, foot, and rest) of four edible freshwater mussels (Anodonta woodiana, Hyriopsis cumingii, Cristaria plicata, and Lamprotula leai) were studied monthly during Oct. 2003,Sep. 2004 in Lake Taihu with toxic cyanobacterial blooms in the summer. Qualitative and quantitative determinations of MCs in the organs were done by LC,MS and HPLC. The major toxins were present in the hepatopancreas (45.5,55.4%), followed by visceral mass with substantial amount of gonad (27.6,35.5%), whereas gill and foot were the least (1.8,5.1%). The maximum MC contents in the hepatopancreas, intestine, visceral mass, gill, foot, and rest were 38.48, 20.65, 1.70, 0.64, 0.58, and 0.61 ,g/g DW, respectively. There were rather good positive correlation in MC contents between intestines and hepatopancreas of the four bivalves (r = 0.75,0.97, p < 0.05). There appeared to be positive correlations between the maximum MC content in the hepatopancreas and the ,13C (r = 0.919) or ,15N (r = 0.878) of the foot, indicating that the different MC content in the hepatopancreas might be due to different food ingestion. A glutathione (GSH) conjugate of MC-LR was also detected in the foot sample of C. plicata. Among the foot samples analyzed, 54% were above the provisional WHO tolerable daily intake (TDI) level, and the mean daily intakes from the four bivalves were 8,23.5 times the TDI value when the bivalves are eaten as a whole, suggesting the high risk of consuming bivalves in Lake Taihu. © 2005 Wiley Periodicals, Inc. Environ Toxicol 20: 572,584, 2005. [source] Seasonal production and molecular characterization of microcystins in Oneida Lake, New York, USAENVIRONMENTAL TOXICOLOGY, Issue 3 2005Amber Hotto Abstract Oneida Lake, northeast of Syracuse, New York, in the United States, is a shallow eutrophic lake with a well-established toxic cyanobacterial population. Samples for DNA, toxin, and phycological analyses were collected from six stations throughout the summers of 2002 (78 samples) and 2003 (95 samples). DNA was amplified by PCR using primer sets specific to the nonribosomal microcystin synthetase complex (mcyB and mcyD). PCR analysis in 2002 indicated that the microcystin genes were present in the water column from mid-June through October, as 88% of the samples tested positive for mcyB and 79% of the samples tested positive for mcyD. In both years the onset of microcystin production was detected as early as mid-July by the protein phosphatase inhibition assay, reaching a maximum in 2002 of 2.9 ,g L,1 and in 2003 of 3.4 ,g L,1. Beginning in mid- to late August of both years the microcystin level at all six stations was in excess of the World Health Organization (WHO) advisory level of 1.0 ,g L,1. In the present study we compared microcystin occurrence and potential production at the six stations using protein phosphatase inhibition assay, high-performance liquid chromatography, and polymerase chain reaction analyses. © 2005 Wiley Periodicals, Inc. Environ Toxicol 20: 243,248, 2005. [source] Chronic toxicity and responses of several important enzymes in Daphnia magna on exposure to sublethal microcystin-LRENVIRONMENTAL TOXICOLOGY, Issue 3 2005Wei Chen Abstract In the current study, the toxicological mechanisms of microcystin-LR and its disadvantageous effects on Daphnia magna were examined. Survival rate, number of newborn, activity of several important enzymes [glutathione S-transferase (GST), lactate dehydrogenase (LDH), phosphatases, and glutathione], accumulated microcystins, and ultrastructural changes in different organs of Daphnia were monitored over the course of 21-day chronic tests. The results indicated that low concentrations of dissolved microcystin had no harmful effect on Daphnia. On the contrary, stimulatory effects were detected. In the presence of toxin at high dosage and for long-term exposure, GST and glutathione levels decreased significantly. The decreased enzyme activity in the antioxidant system probably was caused by detoxification reactions with toxins. And these processes of detoxification at the beginning of chronic tests may enable phosphatases in Daphnia magna to withstand inhibition by the toxins. At the same time, we also found that the LDH activity in test animals increased with exposure to microcystin-LR, indicating that adverse effects occurred in Daphnia. With microcystin given at a higher dosage or for a longer exposure, the effect on Daphnia magna was fatal. In the meantime, microcystin began to accumulate in Daphnia magna, and phosphatase activity started to be inhibited. From the ultrastructure results of cells in D. magna, we obtained new information: the alimentary canal may be the target organ affected by exposure of microcystins to D. magna. The results of the current study also suggested that the oxidative damage and PPI (protein phosphatase inhibition) mechanisms of vertebrates also are adapted to Daphnia. © 2005 Wiley Periodicals, Inc. Environ Toxicol 20: 323,330, 2005. [source] Physiological and biochemical analyses of microcystin-RR toxicity to the cyanobacterium Synechococcus elongatusENVIRONMENTAL TOXICOLOGY, Issue 6 2004Zhi-quan Hu Abstract Freshwater Microcystis may form dense blooms in eutrophic lakes. It is known to produce a family of related cyclic hepatopeptides (microcystins, MC) that constitute a threat to aquatic ecosystems. Most toxicological studies of microcystins have focused on aquatic animals and plants, with few examining the possible effects of microcystins on phytoplankton. In this study we chose the unicellular Synechococcus elongatus (one of the most studied and geographically most widely distributed cyanobacteria in the picoplankton) as the test material and investigated the biological parameters: growth, pigment (chlorophyll-a, phycocyanin), photosynthetic activity, nitrate reductase activity, and protein and carbohydrate content. The results revealed that microcystin-RR concentrations above 100 ,g · L,1 significantly inhibited the growth of Synechococcus elongatus. In addition, a change in color of the toxin-treated algae (chlorosis) was observed in the experiments. Furthermore, MC-RR markedly inhibited the synthesis of the pigments chlorophyll-a and phycocyanin. A drastic reduction in photochemical efficiency of PSII (Fv/Fm) was found after a 96-h incubation. Changes in protein and carbohydrate concentrations and in nitrate reductase activity also were observed during the exposure period. This study aimed to evaluate the mechanisms of microcystin toxicity on a cyanobacterium, according to the physiological and biochemical responses of Synechococcus elongatus to different doses of microcystin-RR. The ecological role of microcystins as an allelopathic substance also is discussed in the article. © 2004 Wiley Periodicals, Inc. Environ Toxicol 19: 571,577, 2004. [source] Characteristics of microcystin production in the cell cycle of Microcystis viridisENVIRONMENTAL TOXICOLOGY, Issue 1 2004Keishi Kameyama Abstract The correlation between the content of three microcystins (types LR, RR and YR) and the cell cycle of an axenic strain of Microcystis viridis, NIES-102, was investigated under conditions of high (16 mg L,1) and low (1.0 mg L,1) nitrate (NO3 -N) concentrations. Each phase of the cell cycle was identified using a flow cytometer equipped with a 488-nm argon laser using SYTOX Green dye, which binds specifically to nucleic acids and can be exited by the wavelength (Ex/Em: 504/523 nm on DNA). Microcystin concentration showed a positive linear correlation with DNA concentration. The microcystin content of the cells changed remarkably as the cell cycle process proceeded, with maximum content in the G2/M phase and minimum content in the G0/G1 phase. Under a condition of high NO3 -N concentration, the ratio of the total content in the G0/G1 phase to that in the G2/M phase was about 6:1. In contrast, for the two batch cultures the total content was 1.3-fold greater in the G2/M phase. The compositions of the three microcystins also changed along with the cell cycle process, although there was little difference in composition that was related to NO3 -N concentration. Therefore, there were distinctive compositions specific to each phase of the cycle, and the cell cycle of the M. viridis strain was more strongly responsible for both the quantity and the types of microcystin production than was the effect of NO3 -N concentration. © 2004 Wiley Periodicals, Inc. Environ Toxicol 19: 20,25, 2004. [source] Toxicology of a Microcystis ichthyoblabe waterbloom from Lake Oued Mellah (Morocco)ENVIRONMENTAL TOXICOLOGY, Issue 1 2002Brahim Sabour Abstract In the Lake Oued Mellah cyanobacteria waterblooms occur periodically in late spring and summer with Microcystis ichthyoblabe as the main bloom-forming species. In 1999, a heavy waterbloom of M. ichthyoblabe occurred during May June with a maximal biomass of 298 mg/l. During this period, several bloom samples were collected. The toxicity assessment was done by mouse and brine shrimp (Artemia) bioassays. Apart from the sample collected on 15/06/1999, all the other samples were toxic by mouse bioassay. The LD50 determined by intraperitoneal injection to mice during active cyanobacterial growth and decline phases were 518 and 1924 mgDW/kg respectively. Using Artemia bioassay, the 24hLC50 varied from 6.0 to 40.6 mg/ml and the 48hLC50 ranged from 2.8 to 18.2 mg/ml. The separation and identification of microcystin variants was performed by high performance liquid chromatography,photodiode array detection. Eleven toxins were separated and preliminarily identified as microcystin variants as they exhibit a typical UV spectra like the microcystin-LR standard. The quantification of total microcystins determined by enzyme-linked immunosorbent assay showed that the contents were varied between 0.1 and 0.76 ,g/g DW. © 2002 by Wiley Periodicals, Inc. Environ Toxicol 17: 24,31, 2002 [source] |