Microcosm Systems (microcosm + system)

Distribution by Scientific Domains


Selected Abstracts


Overcompensatory population dynamic responses to environmental stochasticity

JOURNAL OF ANIMAL ECOLOGY, Issue 6 2008
James C. Bull
Summary 1To quantify the interactions between density-dependent, population regulation and density-independent limitation, we studied the time-series dynamics of an experimental laboratory insect microcosm system in which both environmental noise and resource limitation were manipulated. 2A hierarchical Bayesian state-space approach is presented through which it is feasible to capture all sources of uncertainty, including observation error to accurately quantify the density dependence operating on the dynamics. 3The regulatory processes underpinning the dynamics of two different bruchid beetles (Callosobruchus maculatus and Callosobruchus chinensis) are principally determined by environmental conditions, with fluctuations in abundance explained in terms of changes in overcompensatory dynamics and stochastic processes. 4A general, stochastic population model is developed to explore the link between abundance fluctuations and the interaction between density dependence and noise. Taking account of time-lags in population regulation can substantially increase predicted population fluctuations resulting from underlying noise processes. [source]


Effects of lambda-cyhalothrln in two ditch microcosm systems of different trophic status

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 7 2005
Ivo Roessink
Abstract The fate and effects of the pyrethroid insecticide lambda-cyhalothrin were compared in mesotrophic (macrophyte-dominated) and eutrophic (phytoplankton-dominated) ditch microcosms (,0.5 m3). Lambda-cyhalothrin was applied three times at one-week intervals at concentrations of 10, 25, 50, 100, and 250 ng/L. The rate of dissipation of lambda-cyhalothrin in the water column of the two types of test systems was similar. After 1 d, only 30% of the amount applied remained in the water phase. Initial, direct effects were observed primarily on arthropod taxa. The most sensitive species was the phantom midge (Chaoborus obscuripes). Threshold levels for slight and transient direct toxic effects were similar (10 ng/L) between types of test systems. At treatment levels of 25 ng/L and higher, apparent population and community responses occurred. At treatments of 100 and 250 ng/L, the rate of recovery of the macroinvertebrate community was lower in the macrophyte-dominated systems, primarily because of a prolonged decline of the amphipod Gammarus pulex. This species occurred at high densities only in the macrophyte-dominated enclosures. Indirect effects (e.g., increase of rotifers and microcrustaceans) were more pronounced in the plankton-dominated test systems, particularly at treatment levels of 25 ng/L and higher. [source]


A test of the community conditioning hypothesis: Persistence of effects in model ecological structures dosed with the jet fuel jp-8

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 2 2000
Wayne G. Landis
Abstract The foundation of the community conditioning hypothesis, the persistence of effects, was tested in a series of microcosm experiments. Experiments were conducted with the water-soluble fraction of the turbine fuel JP-8 using the standard protocols for the standardized aquatic microcosm (SAM). A repeat trial was conducted using the SAM protocol but with a 126-d test period, twice the standard duration. The results were examined using a variety of conventional univariate, multivariate, and graphical techniques. The principal conclusions were as follows. Effects are persistent in these model ecological systems long after the degradation of the toxicant. Patterns of impacts are detectable at concentrations 15 times lower than an experimentally derived single-species EC50. The replicate experiments are not replicable in the specific, but the broad pattern of the disruption of algal- herbivore dynamics followed by more subtle effects are consistently repeated. The durability of the indirect effects and therefore the information about historical events appears to be a consistent feature of these microcosm systems. The identity of the treatment groups persists. The critical features of the community conditioning hypothesis,persistence of information within ecologicalsystems and the reappearance of patterns and therefore the nonequilibrium dynamics,are again confirmed. The implications of these findings for environmental toxicology, monitoring, and ecological risk assessment are discussed. [source]


On the reproducibility of microcosm experiments , different community composition in parallel phototrophic biofilm microcosms

FEMS MICROBIOLOGY ECOLOGY, Issue 2 2006
Guus Roeselers
Abstract Phototrophic biofilms were cultivated simultaneously using the same inoculum in three identical flow-lane microcosms located in different laboratories. The growth rates of the biofilms were similar in the different microcosms, but denaturing gradient gel electrophoresis (DGGE) analysis of both 16S and 18S rRNA gene fragments showed that the communities developed differently in terms of species richness and community composition. One microcosm was dominated by Microcoleus and Phormidium species, the second microcosm was dominated by Synechocystis and Phormidium species, and the third microcosm was dominated by Microcoleus- and Planktothrix -affiliated species. No clear effect of light intensity on the cyanobacterial community composition was observed. In addition, DGGE profiles obtained from the cultivated biofilms showed a low resemblance with the profiles derived from the inoculum. These findings demonstrate that validation of reproducibility is essential for the use of microcosm systems in microbial ecology studies. [source]


Dietary protein level and natural food management in the culture of blue (Litopenaeus stylirostris) and white shrimp (Litopenaeus vannamei) in microcosms

AQUACULTURE NUTRITION, Issue 3 2003
L.R. Martinez-Cordova
Abstract The effect of dietary protein level and natural food management on the production parameters of blue and white shrimp, as well as on water quality, was evaluated in a microcosms system (plastic pools simulating aquaculture ponds). Two experimental trials were carried out in the facilities of DICTUS, University of Sonora, Northwest México. Treatment with low protein diet (LP) consisted of a low protein input (diet with 250 g kg,1 crude protein) through the culture period; treatment with high protein diet (HP) consisted of a high protein input (diet with 400 g kg,1 crude protein) through the trial, and finally treatment VP consisted of an adjustment of protein input (diets with 250, 350 or 400 g kg,1 crude protein), depending on the abundance of biota (zooplankton and benthos) in the system. Each species responded differently to the treatments. For blue shrimp, low protein input resulted in the lowest final body weight (12.9 ± 0.6 g) and biomass (696.0 g pool,1). Survival and feed conversion ratio were similar in the three treatments. For white shrimp, the best growth, biomass and food conversion ratio were obtained in the low protein input treatment. Water quality parameters such as nitrate, ammonia and organic matter during the two trials, were better for LP and VP treatments. White shrimp seems to have lower protein requirements than blue shrimp. For the blue shrimp culture, adjusting protein input according to natural food abundance (zooplankton and benthos) in the system, seems to be advantageous because of the possibility of getting a production similar to that obtained with a high protein input through the farming period, but at lower feed cost, and with a lower environmental impact. It is concluded that a high protein input through the whole farming period is not the best feeding strategy for any of the two species. [source]