Microchannels

Distribution by Scientific Domains

Terms modified by Microchannels

  • microchannel flow

  • Selected Abstracts


    A MICROCHANNEL FOR IN VITRO IMAGING OF ERYTHROCYTE SHAPE TRANSFORMATIONS BY VIDEO MICROSCOPIC TECHNIQUE

    EXPERIMENTAL TECHNIQUES, Issue 4 2009
    S. Jayavanth
    First page of article [source]


    Numerical Study on Bubble Formation of a Gas-Liquid Flow in a T-Junction Microchannel

    CHEMICAL ENGINEERING & TECHNOLOGY (CET), Issue 12 2009
    L. Dai
    Abstract Bubble emergence in a gas-liquid flow in a T-junction microchannel of 100,,m diameter, operated under a squeezing regime, was simulated with the computational fluid dynamics method. In general, bubble formation in channels includes three stages: expansion, collapse and pinching off. After analyzing and comparing quantitatively the three forces of pressure, surface tension and shear stress acting on the gas thread in the whole process, their effects in the different stages were identified. The collapse stage was the most important for bubble formation and was investigated in detail. It was found that the collapse process was mostly influenced by the liquid superficial velocity, and the rate and time of collapse can be correlated with empirical equations including the liquid superficial velocity, the capillary number and the Reynolds number. [source]


    Numerical Analysis of Isothermal Gaseous Flows in Microchannel

    CHEMICAL ENGINEERING & TECHNOLOGY (CET), Issue 1 2006
    B. Cao
    Abstract Two-dimensional compressible momentum equations were solved by a perturbation analysis and the PISO algorithm to investigate the effects of compressibility and rarefaction on the local flow resistance of isothermal gas flow in circular microchannels. The computations were performed for a wide range of Reynolds numbers and inlet Mach numbers. The explicit expression of the normalized local Fanning friction factor along the microchannel was derived in the present paper. The results reveal that the local Fanning friction factor is a function of the inlet Mach number, the Reynolds number and the length-diameter ratio of the channel. For larger Reynolds and inlet Mach numbers, the friction coefficient in the microchannel is higher than the value in a macrotube, and the gas flow in the microchannel is dominated only by compressibility. For smaller Reynolds and inlet Mach numbers, the Fanning friction factor of gas flow in the microchannel is lower than that in a circular tube of conventional size due to slip flow at the wall and thus, rarefaction has a significant effect on the fluid flow characteristics in a microchannel. [source]


    Separation and Detection of Nitrophenols at Capillary Electrophoresis Microchips with Amperometric Detection

    ELECTROANALYSIS, Issue 2 2006
    Jan Fischer
    Abstract A miniaturized analytical system for the separation and amperometric detection of toxic nitrophenols, based on the coupling of a micromachined capillary electrophoresis (CE) chip with a glassy carbon detector is described. This microsystem enables a rapid (120,s/sample) simultaneous determination of five priority nitrophenolic pollutants (2-nitrophenol, 3-nitrophenol, 4-nitrophenol, 2,4-dinitrophenol, and 2-methyl-4,6-dinitrophenol). These compounds can be detected down to the 1×10,5,M level using a 15,mM phosphate buffer pH,7.2 (containing 1.3,mM ,-cyclodextrin) as running solution on 77,mm long microchannel by applying a separation voltage of 3000,V and a negative potential of ,0.7,V (vs. Ag /AgCl wire). Applicability to ground water samples was demonstrated. [source]


    Numerical studies of electrokinetic control of DNA concentration in a closed-end microchannel

    ELECTROPHORESIS, Issue 5 2010
    Yasaman Daghighi
    Abstract A major challenge in lab-on-a-chip devices is how to concentrate sample molecules from a dilute solution, which is critical to the effectiveness and the detection limit of on-chip bio-chemical reactions. A numerical study of sample concentration control by electrokinetic microfluidic means in a closed-end microchannel is presented in this paper. The present method provides a simple and efficient way of concentration control by using electrokinetic trapping of a charged species of interest, controlling liquid flow and separating different sample molecules in the microchannel. The electrokinetic-concentration process and the controlled transport of the sample molecules are numerically studied. In this system, in addition to the electroosmotic flow and the electrophoresis, the closed-end of the chamber causes velocity variation at both ends of the channel and induces a pressure gradient and the associated fluid movement in the channel. The combined effects determine the final concentration field of the sample molecules. The influences of a number of parameters such as the channel dimensions, electrode size and the applied electric field are investigated. [source]


    A microfabricated CE chip for DNA pre-concentration and separation utilizing a normally closed valve

    ELECTROPHORESIS, Issue 18 2009
    Chen-Hua Kuo
    Abstract A simple, sequential DNA pre-concentration and separation method by using a micro-CE chip integrated with a normally closed valve, which is activated by pneumatic suction, has been developed. The CE chip is fabricated using PDMS. A surface treatment technique for coating a polymer bilayer with an anionic charge is applied to modify the surface of the microchannel. A normally closed valve with anionic surface charges forms a nanoscale channel that only allows the passage of electric current but traps the DNA samples so that they are pre-concentrated. After the pre-concentration step, a pneumatic suction force is applied to the normally closed valve. This presses down the valve membrane, which reconnects the channels. The DNA samples are then moved into a separation channel for further separation and analysis. Successful DNA pre-concentration and separation has been achieved. Fluorescent intensity at the pre-concentration area is increased by approximately 3570 times within 1.9,min of operation. The signals from the separation of ,X174 DNA/HaeIII markers are enhanced approximately 41 times after 100,s of pre-concentration time, as compared with the results using a traditional cross-shaped micro-CE chip. These results clearly demonstrate that successful DNA pre-concentration for signal enhancement and separation analysis can be performed by using this new micro-CE chip. [source]


    Microchip electrophoresis in low-temperature co-fired ceramics technology with contactless conductivity measurement

    ELECTROPHORESIS, Issue 14 2009
    Georg Fercher
    Abstract In this paper a novel micromachined contactless conductivity CE device produced in low temperature co-fired ceramics (LTCC) is introduced. The application of LTCC multilayer technology provides a promising method for the contactless detection of conductive compounds because of its increased dielectric constant compared with glass or plastics. The capacitive coupling of the excitation signal into the microchannel across the LTCC substrate is improved, resulting in better detection sensitivity. Two silver electrodes located externally at opposite sides at the end of the separation channel act as detector. Impedance variations in the channel are measured without galvanic contact between electrodes and fluid. Inorganic ions are separated in less than 1,min with this novel ceramic device. The limit of detection is 10,,M for potassium. [source]


    Nanostructured pillars based on vertically aligned carbon nanotubes as the stationary phase in micro-CEC

    ELECTROPHORESIS, Issue 12 2009
    Ren-Guei Wu
    Abstract We present a micro-CEC chip carrying out a highly efficient separation of dsDNA fragments through vertically aligned multi-wall carbon nanotubes (MWCNTs) in a microchannel. The vertically aligned MWCNTs were grown directly in the microchannel to form straight nanopillar arrays as ordered and directional chromatographic supports. 1-Pyrenedodecanoic acid was employed for the surface modification of the MWCNTs' stationary phase to adsorb analytes by hydrophobic interactions. This device was used for separating dsDNA fragments of three different lengths (254, 360, and 572,bp), and fluorescence detection was employed to verify the electrokinetic transport in the MWCNT array. The micro-CEC separation of the three compounds was achieved in less than 300,s at a field strength of 66,V/cm due to superior laminar flow patterns and a lower flow resistance resulting from the vertically aligned MWCNTs being used as the stationary phase medium. In addition, a fivefold reduction of band broadening was obtained when the analyte was separated by the chromatographic MWCNT array channel instead of the CE channel. From all of the results, we suggest that an in situ grown and directional MWCNT array can potentially be useful for preparing more diversified forms of stationary phases for vertically efficient chip-based electrochromatography. [source]


    Red blood cell quantification microfluidic chip using polyelectrolytic gel electrodes

    ELECTROPHORESIS, Issue 9 2009
    Kwang Bok Kim
    Abstract This paper reports on a novel microfluidic chip with polyelectrolytic gel electrodes (PGEs) used to rapidly count the number of red blood cells (RBCs) in diluted whole blood. The proposed microdevice is based on the principle that the impedance across a microchannel between two PGEs varies sensitively as RBCs pass through it. The number and amplitude of impedance peaks provide the information about the number and size of RBCs, respectively. This system features a low-voltage dc detection method and non-contact condition between cells and metal electrodes. Major advantages include stable detection under varying cellular flow rate and position in the microchannel, little chance of cell damage due to high electric field gradient and no surface fouling of the metal electrodes. The performance of this PGEs-based system was evaluated in three steps. First, in order to observe the size-only dependence of the impedance signal, three different sizes of fluorescent microbeads (7.2, 10.0, and 15.0,,m; Bangs laboratories, USA) were used in the experiment. Second, the cell counting performance was evaluated by using 7.2,,m fluorescent microbeads, similar in size to RBCs, in various concentrations and comparing the results with an animal hematoanalyzer (MS 9-5; Melet schloesing laboratories, France). Finally, in human blood sample tests, intravenously collected whole blood was just diluted in a PBS without centrifuge or other pretreatments. The PGE-based system produced almost identical number of RBCs in over 800-fold diluted samples to the results from a commercialized human hematoanalyzer (HST-N402XE; Sysmex, Japan). [source]


    Cover Picture: Electrophoresis 5'09

    ELECTROPHORESIS, Issue 5 2009
    Article first published online: 3 MAR 200
    Issue no. 5 is a special issue on "Fundamentals of Electrophoresis" containing 21 papers including 3 Fast Track papers. The first Fast Track paper deals with imaged CE technology for measuring charge variants of monoclonal antibodies, the second paper is on the dispersion of protein bands in a horseshoe microchannel during IEF while the third Fast Track paper reports a theoretical and experimental study on the irreversible deposition of colloidal particles from electrokinetic microfluidic flow. The remaining 18 papers of this special issue are distributed into seven parts pertaining to various fundamental topics, e.g., electromigration and dielectrophoresis in microchip channels, computer simulation of electromigration, stacking, interaction in electrophoretic systems, thermal effects, electroosmotic flow, etc. [source]


    Simulations of IEF in microchannel with variable cross-sectional area

    ELECTROPHORESIS, Issue 5 2009
    Yin Chou
    Abstract This study develops a 1-D mass transport model to describe the electrophoresis transport behavior within a microchannel with a variable cross-sectional area. Utilizing three different numerical schemes, simulations are performed to investigate the IEF of proteins in ampholyte-based pH gradients within both a planar microchannel and a contraction,expansion microchannel, respectively. The simulation results obtained using the modified 1-D mass transport model and the finite-volume method (FVM) for the IEF separation of a single protein sample in a ten-ampholyte-based pH gradient within a planar microchannel are consistent with those presented by Shim et al. [Electrophoresis 2007, 28, 572,586] using a 2-D FVM scheme. In addition, the Courant,Friedrichs,Lewy number insensitive conservation element and solution element (CNI-CESE) method is found to be both more robust and more computationally efficient than the conventional CESE scheme when modeling IEF phenomena within a contraction,expansion microchannel. In modeling the IEF separation of four sample ampholytes in a 20-ampholtye-based pH gradient within a contraction,expansion microchannel, the results obtained using the CNI-CESE scheme are in good agreement with those published in literature. Moreover, the simulations can be performed significantly faster with the new 1-D model and the CNI-CESE scheme. Finally, the results obtained using the modified 1-D mass transport model and the CNI-CESE scheme demonstrate that the concentration of the focused test sample and the resolution of the pH gradient within the microchannel increase as the number of ampholytes used to accomplish the IEF separation process is increased. [source]


    A low-leakage sample plug injection scheme for crossform microfluidic capillary electrophoresis devices incorporating a restricted cross-channel intersection

    ELECTROPHORESIS, Issue 15 2008
    Chin-Lung Chang
    Abstract This study develops a crossform CE microfluidic device in which a single-circular barrier or a double-circular barrier is introduced at the cross-channel intersection. Utilizing a conventional crossform injection scheme, it is shown that these barriers reduce sample leakage and deliver a compact sample band into the separation channel, thereby ensuring an enhanced detection performance. A series of numerical and experimental investigations are performed to investigate the effects of the barrier type and the barrier ratio on the flow streamlines within the microchannel and to clarify their respective effects on the sample leakage ratio and sample plug variance during the injection process. The results indicate that a single-circular barrier injector with a barrier ratio greater than 20% and a double-circular barrier injector with a barrier ratio greater than 40% minimize the sample leakage ratio and produce a compact sample plug. As a result, both injectors have an excellent potential for use in high-quality, high-throughput chemical analysis procedures and in many other applications throughout the micro-total analysis systems field. [source]


    Confinement effects on the morphology of photopatterned porous polymer monoliths for capillary and microchip electrophoresis of proteins

    ELECTROPHORESIS, Issue 14 2008
    Mei He
    Abstract We find that the morphology of porous polymer monoliths photopatterned within capillaries and microchannels is substantially influenced by the dimensions of confinement. Porous polymer monoliths were prepared by UV-initiated free-radical polymerization using either the hydrophilic or hydrophobic monomers 2-hydroxyethyl methacrylate or butyl methacrylate, cross-linker ethylene dimethacrylate and different porogenic solvents to produce bulk pore diameters between 3.2 and 0.4,µm. The extent of deformation from the bulk porous structure under confinement strongly depends on the ratio of characteristic length of the confined space to the monolith pore size. The effects are similar in cylindrical capillaries and D-shaped microfluidic channels. Bulk-like porosity is observed for a confinement dimension to pore size ratio >10, and significant deviation is observed for a ratio <5. At the extreme limit of deformation a smooth polymer layer ,300 nm thick is formed on the surface of the capillary or microchannel. Surface tension or wetting also plays a role, with greater wetting enhancing deformation of the bulk structure. The films created by extreme deformation provide a rapid and effective strategy to create robust wall coatings, with the ability to photograft various surface chemistries onto the coating. This approach is demonstrated through cationic films used for electroosmotic flow control and neutral hydrophilic coatings for electrophoresis of proteins. [source]


    Accumulation and filtering of nanoparticles in microchannels using electrohydrodynamically induced vortical flows

    ELECTROPHORESIS, Issue 14 2008
    Maika Felten
    Abstract We present an approach for the accumulation and filtering of nano- and microparticles in microfluidic devices that is based on the generation of electric traveling waves in the radio-frequency range. Upon application of the electric field via a microelectrode array, complex particle trajectories and particle accumulation are observed in well-defined regions in a microchannel. Through the quantitative mapping of the 3-D flow pattern using two-focus fluorescence cross-correlation spectroscopy, two vortices could be identified as one of the sources of the force field that induces the formation of particle clouds. Dielectrophoretic forces that directly act on the particles are the second source of the force field. A thorough 2-D finite element analysis identifies the electric traveling wave mechanism as the cause for the unexpected flow behavior observed. Based on these findings, strategies are discussed, first, for avoiding the vortices to optimize electrohydrodynamic micropumps and, secondly, for utilizing the vortices in the development of microdevices for efficient particle accumulation, separation, and filtering. Such devices may find numerous biomedical applications when highly diluted nano- and microsuspensions have to be processed. [source]


    Temperature gradient focusing in a PDMS/glass hybrid microfluidic chip

    ELECTROPHORESIS, Issue 24 2007
    Takuya Matsui
    Abstract This paper reports the application of temperature gradient focusing (TGF) in a PDMS/glass hybrid microfluidic chip. With TGF, by the combination of a temperature gradient along a microchannel, an applied electric field, and a buffer with a temperature-dependent ionic strength, analytes are focused by balancing their electrophoretic velocities against the bulk velocity of the buffer containing the analytes. In this work, Oregon Green 488 carboxylic acid was concentrated approximately 30 times as high as the initial concentration in 45,s at moderate electric strength of 70,V/cm and a temperature gradient of 55°C across the PDMS/glass hybrid microfluidic chip with a 1,cm long capillary. [source]


    A micropillar-integrated smart microfluidic device for specific capture and sorting of cells

    ELECTROPHORESIS, Issue 24 2007
    Yan-Jun Liu
    Abstract An integrated smart microfluidic device consisting of nickel micropillars, microvalves, and microchannels was developed for specific capture and sorting of cells. A regular hexagonal array of nickel micropillars was integrated on the bottom of a microchannel by standard photolithography, which can generate strong induced magnetic field gradients under an external magnetic field to efficiently trap superparamagnetic beads (SPMBs) in a flowing stream, forming a bed with sufficient magnetic beads as a capture zone. Fluids could be manipulated by programmed controlling the integrated air-pressure-actuated microvalves, based on which in situ bio-functionalization of SPMBs trapped in the capture zone was realized by covalent attachment of specific proteins directly to their surface on the integrated microfluidic device. In this case, only small volumes of protein solutions (62.5,nL in the capture zone; 375,nL in total volume needed to fill the device from inlet A to the intersection of outlet channels F and G) can meet the need for protein! The newly designed microfluidic device reduced greatly chemical and biological reagent consumption and simplified drastically tedious manual handling. Based on the specific interaction between wheat germ agglutinin (WGA) and N -acetylglucosamine on the cell membrane, A549 cancer cells were effectively captured and sorted on the microfluidic device. Capture efficiency ranged from 62 to 74%. The integrated microfluidic device provides a reliable technique for cell sorting. [source]


    Real-time monitoring of intracellular calcium dynamic mobilization of a single cardiomyocyte in a microfluidic chip pertaining to drug discovery

    ELECTROPHORESIS, Issue 24 2007
    Xiujun Li
    Abstract A microfluidic method for real-time quantitative measurement of cellular response pertaining to drug discovery is reported. This method is capable of multiple-step liquid delivery for measuring the drug response of a single cardiomyocyte, due to the improved cell retention by a newly designed chip. The chip, which consists of a cell-retention chamber with a weir structure, was fabricated just by a one-photomask microfabrication procedure followed by on-chip etching. This method differs from the conventional method, which uses two-mask photolithography to fabricate the microchannel (deep etch) and the weir structure (shallow etch). The dimensions of the weir structure have been predicted by a mathematical model, and confirmed by confocal microscopy. Using this microfluidic method, the dynamic [Ca2+]i mobilization in a single cardiomyocyte during its spontaneous contraction was quantified. Furthermore, we measured the cellular response of a cardiomyocyte on (i) a known cardiotonic agent (caffeine), (ii) a cardiotoxic chemotherapeutic drug (daunorubicin), and (iii) an herbal anticancer drug candidate , isoliquiritigenin (IQ) based on the fluorescent calcium measurement. It was found that IQ had produced a less pronounced effect on calcium mobilization of the cardiomyocytes whereas caffeine and daunorubicin had much stronger effects on the cells. These three experiments on cardiomyocytes pertaining to drug discovery were only possible after the improved cell retention provided by the new chip design (MV2) required for multiple-step real-time cellular analysis on a microchip, as compared with our old chip design (MV1). [source]


    Analysis of electrokinetic transport of a spherical particle in a microchannel

    ELECTROPHORESIS, Issue 4 2007
    Harikrishnan N. Unni
    Abstract Electrokinetically driven microfluidic devices that are used for biological cell/particle manipulation (e.g., cell sorting, separation) involve electrokinetic transport of these particles in microchannels whose dimension is comparable with particles' size. This paper presents an analytical study on electrokinetic transport of a charged spherical particle in a charged parallel-plate microchannel. Under the thin electric double-layer assumption, solutions in closed-form solutions for the particle velocity and disturbed electrical and fluid velocity fields are obtained for plane-symmetric (along the channel centerline) and asymmetric (off the channel centerline) motions of a sphere in a parallel-plate microchannel. The effects of relative particle size and eccentricity (i.e., off the centerline distance) on a particle's translational and rotational velocities are analyzed. [source]


    Carbon nanotube/poly(methyl methacrylate) composite electrode for capillary electrophoretic measurement of honokiol and magnolol in Cortex Magnoliae Officinalis

    ELECTROPHORESIS, Issue 16 2006
    Xiao Yao
    Abstract This paper describes the development and the application of a novel carbon nanotube/poly(methyl methacrylate) (CNT/PMMA) composite electrode as a sensitive amperometric detector of CE. The composite electrode was fabricated on the basis of the in,situ polymerization of a mixture of CNT and prepolymerized methylmethacrylate in the microchannel of a piece of fused-silica capillary under heat. The performance of this unique system has been demonstrated by separating and detecting honokiol and magnolol in traditional Chinese medicine, Cortex Magnoliae Officinalis. Factors influencing their separation and detection processes were examined and optimized. Honokiol and magnolol were well separated within 7,min in a 40 cm long capillary at a separation voltage of 15,kV using a 50 mM borate buffer (pH,9.2). The new CNT-based CE detector offered significantly lower operating potentials, yielded substantially enhanced S/N characteristics, and exhibited resistance to surface fouling and hence enhanced stability. It demonstrated long-term stability and reproducibility with RSDs of less than 5% for the peak current (n = 9) and should also find a wide range of applications in microchip CE, flowing injection analysis, and other microfluidic analysis systems. [source]


    Study of Joule heating effects on temperature gradient in diverging microchannels for isoelectric focusing applications

    ELECTROPHORESIS, Issue 10 2006
    Brian Kates
    Abstract IEF is a high-resolution separation method taking place in a medium with continuous pH gradients, which can be set up by applying electrical field to the liquid in a diverging microchannel. The axial variation of the channel cross-sectional area will induce nonuniform Joule heating and set up temperature gradient, which will generate pH gradient when proper medium is used. In order to operationally control the thermally generated pH gradients, fundamental understanding of heat transfer phenomena in microfluidic chips with diverging microchannels must be improved. In this paper, two 3-D numerical models are presented to study heat transfer in diverging microchannels, with static and moving liquid, respectively. Through simulation, the temperature distribution for the entire chip has been revealed, including both liquid and solid regions. The model for the static liquid scenario has been compared with published results for validation. Parametric studies have showed that the channel geometry has significant effects on the peak temperature location, and the electrical conductivity of the medium and the wall boundary convection have effects on the generated temperature gradients and thus the generated pH gradients. The solution to the continuous flow model, where the medium convection is considered, shows that liquid convection has significant effects on temperature distribution and the peak temperature location. [source]


    Estimation of Joule heating effect on temperature and pressure distribution in electrokinetic-driven microchannel flows

    ELECTROPHORESIS, Issue 3 2006
    Reiyu Chein Professor
    Abstract In this study we present simple analytical models that predict the temperature and pressure variations in electrokinetic-driven microchannel flow under the Joule heating effect. For temperature prediction, a simple model shows that the temperature is related to the Joule heating parameter, autothermal Joule heating parameter, external cooling parameter, Peclet number, and the channel length to channel hydraulic diameter ratio. The simple model overpredicted the thermally developed temperature compared with the full numerical simulation, but in good agreement with the experimental measurements. The factors that affect the external cooling parameters, such as the heat transfer coefficient, channel configuration, and channel material are also examined based on this simple model. Based on the mass conservation, a simple model is developed that predicts the pressure variations, including the temperature effect. An adverse pressure gradient is required to satisfy the mass conservation requirement. The temperature effect on the pressure gradient is via the temperature-dependent fluid viscosity and electroosmotic velocity. [source]


    A multilayer poly(dimethylsiloxane) electrospray ionization emitter for sample injection and online mass spectrometric detection

    ELECTROPHORESIS, Issue 24 2005
    Jamie M. Iannacone
    Abstract An ESI emitter made of poly(dimethylsiloxane) interfaces on-chip sample preparation with MS detection. The unique multilayer design allows both the analyte and the spray solutions to reside on the device simultaneously in discrete microfluidic environments that are spatially separated by a polycarbonate track-etched, nanocapillary array membrane (NCAM). In direct spray mode, voltage is applied to the microchannel containing a spray solution delivered via a syringe pump. For injection, the spray potential is lowered and a voltage is applied that forward biases the membrane and permits the analyte to enter the spray channel. Once the injection is complete, the bias potential is switched off, and the spray voltage is increased to generate the ESI of the injected analyte plug. Consecutive injections of a 10,,M bovine insulin solution are reproducible and produce sample plugs with limited band broadening and high quality mass spectra. Peptide signals are observed following transport through the NCAM, even when the peptide is dissolved in solutions containing up to 20% seawater. The multilayer emitter shows great potential for performing multidimensional chemical manipulations on-chip, followed by direct ESI with negligible dead volume for online MS analysis. [source]


    A microfabricated capillary electrophoresis chip with multiple buried optical fibers and microfocusing lens for multiwavelength detection

    ELECTROPHORESIS, Issue 6 2005
    Suz-Kai Hsiung
    Abstract We present a new microfluidic device utilizing multiwavelength detection for high-throughput capillary electrophoresis (CE). In general, different fluorescent dyes are only excited by light sources with appropriate wavelengths. When excited by an appropriate light source, a fluorescent dye emits specific fluorescence signals of a longer wavelength. This study designs and fabricates plastic micro-CE chips capable of performing multiple-wavelength fluorescence detection by means of multimode optic fiber pairs embedded downstream of the separation channel. For detection purposes, the fluorescence signals are enhanced by positioning microfocusing lens structures at the outlets of the excitation fibers and the inlets of the detection fibers, respectively. The proposed device is capable of detecting multiple samples labeled with different kinds of fluorescent dyes in the same channel in a single run. The experimental results demonstrate that various proteins, including bovine serum albumin and ,-casein, can be successfully injected and detected by coupling two light sources of different wavelengths to the two excitation optic fibers. Furthermore, the proposed device also provides the ability to measure the speed of the samples traveling in the microchannel. The developed multiwavelength micro-CE chip could have significant potential for the analysis of DNA and protein samples. [source]


    Gravity-induced convective flow in microfluidic systems: Electrochemical characterization and application to enzyme-linked immunosorbent assay tests

    ELECTROPHORESIS, Issue 21-22 2004
    Patrick Morier
    Abstract A way of using gravity flow to induce a linear convection within a microfluidic system is presented. It is shown and mathematically supported that tilting a 1 cm long covered microchannel is enough to generate flow rates up to 1000 nL·min -1, which represents a linear velocity of 2.4 mm·s -1. This paper also presents a method to monitor the microfluidic events occurring in a covered microchannel when a difference of pressure is applied to force a solution to flow in said covered microchannel, thanks to electrodes inserted in the microfluidic device. Gravity-induced flow monitored electrochemically is applied to the performance of a parallel-microchannel enzyme-linked immunosorbent assay (ELISA) of the thyroid-stimulating hormone (TSH) with electrochemical detection. A simple method for generating and monitoring fluid flows is described, which can, for instance, be used for controlling parallel assays in microsystems. [source]


    Poly(dimethylsiloxane)-based microfluidic device with electrospray ionization-mass spectrometry interface for protein identification

    ELECTROPHORESIS, Issue 21 2003
    Wang-Chou Sung
    Abstract An easy method to fabricate poly(dimethylsiloxane) (PDMS)-based microfluidic chips for protein identification by tandem mass spectrometry is presented. This microchip has typical electrophoretic microchannels, a flow-through sampling inlet, and a sheathless nanoelectrospray ionization (ESI) interface. The surface of the microchannel was modified with 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) and the generated electroosmotic flow under acidic buffer condition used for the separation was found to be more stable compared to that generated by the microchannel without modification. The feasibility of the device for flow-through sampling, separation, and ESI-MS/MS analysis was demonstrated by the analysis of a standard mixture composed of three tryptic peptides. Results show that four peaks corresponding to three peptide standards and acetylated products of the standard peptide were well resolved and the deduced sequences were consistent with those expected. Furthermore, the compatibility of this device with other miniaturized devices to integrate the whole process was also explored by connecting a miniaturized enzymatic digestion cartridge and a desalting cartridge in series to the sampling inlet of the microchip for the identification of a model protein, ,-casein. [source]


    Improved resolution with microchip-based enhanced field inversion electrophoresis

    ELECTROPHORESIS, Issue 11 2003
    Christopher J. Backhouse
    Abstract We present an improvement of the field inversion electrophoresis (FIE) method in which the passage of sample such as DNA back and forth within a short length of a microchannel can provide a similar resolution to that of a significantly longer microchannel. In constant field FIE the application of an alternating potential (e.g., +/, V) over short periods of time (e.g., several Hz) can provide enhanced separations of DNA fragments. In contrast, the present method consists of a series of separations, each of much longer duration, under high and low fields in such a way that the resolution is enhanced. This method is readily modeled and allows improved resolution to be obtained from extremely short microchannels (e.g., 8 mm) while requiring relatively low applied voltages (e.g., less than 600 V). An additional advantage is that this method can allow for the same equipment to be used in a rapid, low-resolution mode or in a slower, high-resolution mode through what might be referred to as an automated "zoom" capability. We believe that this method may facilitate the integration of microfluidic devices and microelectronic devices by allowing these devices to be of a similar small scale (< 1 cm). [source]


    Dynamic analyte introduction and focusing in plastic microfluidic devices for proteomic analysis

    ELECTROPHORESIS, Issue 1-2 2003
    Yan Li
    Abstract Isoelectric focusing (IEF) separations, in general, involve the use of the entire channel filled with a solution mixture containing protein/peptide analytes and carrier ampholytes for the creation of a pH gradient. Thus, the preparative capabilities of IEF are inherently greater than most microfluidics-based electrokinetic separation techniques. To further increase sample loading and therefore the concentrations of focused analytes, a dynamic approach, which is based on electrokinetic injection of proteins/peptides from solution reservoirs, is demonstrated in this study. The proteins/peptides continuously migrate into the plastic microchannel and encounter a pH gradient established by carrier ampholytes originally present in the channel for focusing and separation. Dynamic sample introduction and analyte focusing in plastic microfluidic devices can be directly controlled by various electrokinetic conditions, including the injection time and the applied electric field strength. Differences in the sample loading are contributed by electrokinetic injection bias and are affected by the individual analyte's electrophoretic mobility. Under the influence of 30 min electrokinetic injection at constant electric field strength of 500 V/cm, the sample loading is enhanced by approximately 10,100 fold in comparison with conventional IEF. [source]


    Microstructures: Facile Fabrication of Monolithic 3D Porous Silica Microstructures and a Microfluidic System Embedded with the Microstructure (Adv. Funct.

    ADVANCED FUNCTIONAL MATERIALS, Issue 9 2010
    Mater.
    D.-P. Kim and co-workers present the fabrication of monolithic 3D porous silica structures into a multilayer framework with bimodal pore size distribution on page 1473. The structure becomes monolithic upon pyrolyzing the stacked layers, and then easily embedded in microchannel with the aid of photolithography, leading to a microfluidic system with built-in microstructure in a site- and shape-controlled manner. [source]


    Facile Fabrication of Monolithic 3D Porous Silica Microstructures and a Microfluidic System Embedded with the Microstructure

    ADVANCED FUNCTIONAL MATERIALS, Issue 9 2010
    ZuoYi Xiao
    Abstract Monolithic 3D porous silica structures are fabricated into a multilayer framework with a bimodal pore size distribution in the micrometer and sub-micrometer range. The fabrication , which involves directed assembly of colloidal spheres, transfer printing, and removal of a sacrificial template , yields robust and mechanically stable structures over a large area. The structure becomes monolithic upon pyrolyzing the stacked layers, which induces necking of the particles. The monolithic microstructures can easily be embedded in microchannels with the aid of photolithography, leading to the formation of a microfluidic system with a built-in microstructure in a site- and shape-controlled manner. Utilization of the system results in a fourfold increase in the mixing efficiency in the microchannel. [source]


    Eutectic Gallium-Indium (EGaIn): A Liquid Metal Alloy for the Formation of Stable Structures in Microchannels at Room Temperature,

    ADVANCED FUNCTIONAL MATERIALS, Issue 7 2008
    Michael D. Dickey
    Abstract This paper describes the rheological behavior of the liquid metal eutectic gallium-indium (EGaIn) as it is injected into microfluidic channels to form stable microstructures of liquid metal. EGaIn is well- ;suited for this application because of its rheological properties at room temperature: it behaves like an elastic material until it experiences a critical surface stress, at which point it yields and flows readily. These properties allow EGaIn to fill microchannels rapidly when sufficient pressure is applied to the inlet of the channels, yet maintain structural stability within the channels once ambient pressure is restored. Experiments conducted in microfluidic channels, and in a parallel-plate rheometer, suggest that EGaIn's behavior is dictated by the properties of its surface (predominantly gallium oxide, as determined by Auger measurement s); these two experiments both yield approximately the same number for the critical surface stress required to induce EGaIn to flow (,0 .5,N/m). This analysis,which shows that the pressure that must be exceeded for EGaIn to flow through a microchannel is inversely proportional to the critical (i.e., smallest) dimension of the channel,is useful to guide future fabrication of microfluidic channels to mold EGaIn into functional microstructures. [source]