Home About us Contact | |||
Microbial Respiration (microbial + respiration)
Selected AbstractsAtmospheric CO2 enrichment facilitates cation release from soilECOLOGY LETTERS, Issue 3 2010L. Cheng Ecology Letters (2010) 13: 284,291 Abstract Atmospheric CO2 enrichment generally stimulates plant photosynthesis and nutrient uptake, modifying the local and global cycling of bioactive elements. Although nutrient cations affect the long-term productivity and carbon balance of terrestrial ecosystems, little is known about the effect of CO2 enrichment on cation availability in soil. In this study, we present evidence for a novel mechanism of CO2 -enhancement of cation release from soil in rice agricultural systems. Elevated CO2 increased organic C allocation belowground and net H+ excretion from roots, and stimulated root and microbial respiration, reducing soil redox potential and increasing Fe2+ and Mn2+ in soil solutions. Increased H+, Fe2+, and Mn2+ promoted Ca2+ and Mg2+ release from soil cation exchange sites. These results indicate that over the short term, elevated CO2 may stimulate cation release from soil and enhance plant growth. Over the long-term, however, CO2 -induced cation release may facilitate cation losses and soil acidification, negatively feeding back to the productivity of terrestrial ecosystems. [source] Functional microbial community response to nutrient pulses by artificial groundwater recharge practice in surface soils and subsoilsFEMS MICROBIOLOGY ECOLOGY, Issue 3 2010Kirsten Schütz Abstract Subsurface microorganisms are essential constituents of the soil purification processes associated with groundwater quality. In particular, soil enzyme activity determines the biodegradation of organic compounds passing through the soil profile. Transects from surface soil to a depth of 3.5 m were investigated for microbial and chemical soil characteristics at two groundwater recharge sites and one control site. The functional diversity of the microbial community was analyzed via the activity of eight enzymes. Acid phosphomonoesterase was dominant across sites and depths, followed by l -leucine aminopeptidase and ,-glucosidase. Structural [e.g. phospholipid fatty acid (PLFA) pattern] and functional microbial diversities were linked to each other at the nonwatered site, whereas amendment with nutrients (DOC, NO3,) by flooding uncoupled this relationship. Microbial biomass did not differ between sites, whereas microbial respiration was the highest at the watered sites. Hence, excess nutrients available due to artificial groundwater recharge could not compensate for the limitation by others (e.g. phosphorus as assigned by acid phosphomonoesterase activity). Instead, at a similar microbial biomass, waste respiration via overflow metabolism occurred. In summary, ample supply of carbon by flooding led to a separation of decomposition and microbial growth, which may play an important role in regulating purification processes during groundwater recharge. [source] Does leaf quality mediate the stimulation of leaf breakdown by phosphorus in Neotropical streams?FRESHWATER BIOLOGY, Issue 4 2006MARCELO ARDÓN Summary 1. Lowland tropical streams have a chemically diverse detrital resource base, where leaf quality could potentially alter the effect of high nutrient concentrations on leaf breakdown. This has important implications given the extent and magnitude of anthropogenic nutrient loading to the environment. 2. Here, we examine if leaf quality (as determined by concentrations of cellulose, lignin and tannins) mediates the effects of high ambient phosphorus (P) concentration on leaf breakdown in streams of lowland Costa Rica. We hypothesised that P would have a stronger effect on microbial and insect processing of high- than of low-quality leaves. 3. We selected three species that represented extremes of quality as measured in leaves of eight common riparian species. Species selected were, from high- to low-quality: Trema integerrima > Castilla elastica > Zygia longifolia. We incubated single-species leaf packs in five streams that had natural differences in ambient P concentration (10,140 ,g soluble reactive phosphorus (SRP) L,1), because of variable inputs of solute-rich groundwater and also in a stream that was experimentally enriched with P (approximately 200 ,g SRP L,1). 4. The breakdown rate of all three species varied among the six streams: T. integerrima (k -values range: 0.0451,0.129 day,1); C. elastica (k -values range: 0.0064,0.021 day,1); and Z. longifolia (k -values range: 0.002,0.008 day,1). Both ambient P concentration and flow velocity had significant effects on the breakdown rate of the three species. 5. Results supported our initial hypothesis that litter quality mediates the effect of high ambient P concentration on leaf processing by microbes and insects. The response of microbial respiration, fungal biomass and invertebrate density to high ambient P concentration was greater in Trema (high quality) than in Castilla or Zygia (low quality). Variation in flow velocity, however, confounded our ability to determine the magnitude of stimulation of breakdown rate by P. 6. Cellulose and lignin appeared to be the most important factors in determining the magnitude of P-stimulation. Surprisingly, leaf secondary compounds did not have an effect. This contradicts predictions made by other researchers, regarding the key role of plant secondary compounds in affecting leaf breakdown in tropical streams. [source] Respiration and annual fungal production associated with decomposing leaf litter in two streamsFRESHWATER BIOLOGY, Issue 9 2004M. D. Carter Summary 1. We compared fungal biomass, production and microbial respiration associated with decomposing leaves in one softwater stream (Payne Creek) and one hardwater stream (Lindsey Spring Branch). 2. Both streams received similar annual leaf litter fall (478,492 g m,2), but Lindsey Spring Branch had higher average monthly standing crop of leaf litter (69 ± 24 g m,2; mean ± SE) than Payne Creek (39 ± 9 g m,2). 3. Leaves sampled from Lindsey Spring Branch contained a higher mean concentration of fungal biomass (71 ± 11 mg g,1) than those from Payne Creek (54 ± 8 mg g,1). Maximum spore concentrations in the water of Lindsay Spring Branch were also higher than those in Payne Creek. These results agreed with litterbag studies of red maple (Acer rubrum) leaves, which decomposed faster (decay rate of 0.014 versus 0.004 day,1), exhibited higher maximum fungal biomass and had higher rates of fungal sporulation in Lindsey Spring Branch than in Payne Creek. 4. Rates of fungal production and respiration per g leaf were similar in the two streams, although rates of fungal production and respiration per square metre were higher in Lindsey Spring Branch than in Payne Creek because of the differences in leaf litter standing crop. 5. Annual fungal production was 16 ± 6 g m,2 (mean ± 95% CI) in Payne Creek and 46 ± 25 g m,2 in Lindsey Spring Branch. Measurements were taken through the autumn of 2 years to obtain an indication of inter-year variability. Fungal production during October to January of the 2 years varied between 3 and 6 g m,2 in Payne Creek and 7,27 g m,2 in Lindsey Spring Branch. 6. Partial organic matter budgets constructed for both streams indicated that 3 ± 1% of leaf litter fall went into fungal production and 7 ± 2% was lost as respiration in Payne Creek. In Lindsey Spring Branch, fungal production accounted for 10 ± 5% of leaf litter fall and microbial respiration for 13 ± 9%. [source] Benthic microbial respiration in Appalachian Mountain, Piedmont, and Coastal Plains streams of the eastern U.S.A.FRESHWATER BIOLOGY, Issue 2 2002B. H. Hill 1.,Benthic microbial respiration was measured in 214 streams in the Appalachian Mountain, Piedmont, and Coastal Plains regions of the eastern United States in summer 1997 and 1998. 2.,Respiration was measured as both O2 consumption in sealed microcosms and as dehydrogenase activity (DHA) of the sediments contained within the microcosms. 3.,Benthic microbial respiration in streams of the eastern U.S., as O2 consumption, was 0.37 ± 0.03 mg O2 m,2 day,1. Respiration as DHA averaged 1.21 ± 0.08 mg O2 m,2 day,1 4.,No significant differences in O2 consumption or DHA were found among geographical provinces or stream size classes, nor among catchment basins for O2 consumption, but DHA was significantly higher in the other Atlantic (non-Chesapeake Bay) catchment basins. 5.,Canonical correlation analyses generated two environmental axes. The stronger canonical axis (W1) represented a chemical disturbance gradient that was negatively correlated with signatures of anthropogenic impacts (ANC, Cl,, pH, SO42), and positively correlated with riparian canopy cover and stream water dissolved organic carbon concentration (DOC). A weaker canonical axis (W2) was postively correlated with pH, riparian zone agriculture, and stream depth, and negatively correlated with DOC and elevation of the stream. Oxygen consumption was significantly correlated with W2 whereas DHA was significantly correlated with W1. 6.,The strengths of the correlations of DHA with environmental variables, particularly those that are proven indicators of catchment disturbances and with the canonical axis, suggest that DHA is a more responsive measure of benthic microbial activity than is O2 consumption. [source] Interregional comparisons of sediment microbial respiration in streamsFRESHWATER BIOLOGY, Issue 2 2000B. H. Hill Summary 1The rate of microbial respiration on fine-grained stream sediments was measured at 371 first to fourth-order streams in the Central Appalachian region (Maryland, Pennsylvania, Virginia, and West Virginia), Southern Rocky Mountains (Colorado), and California's Central Valley in 1994 and 1995. 2Study streams were randomly selected from the United States Environmental Protection Agency's (USEPA) River Reach File (RF3) using the sample design developed by USEPA's Environmental Monitoring and Assessment Program (EMAP). 3Respiration rate ranged from 0 to 0.621 g O2 g -1 AFDM h -1 in Central Appalachian streams, 0-0.254 g O2 g -1 AFDM h -1 in Rocky Mountain streams, and 0-0.436 g O2 g -1 AFDM h -1 in Central Valley streams. 4Respiration was significantly lower in Southern Rocky Mountain streams and in cold water streams (< 15 °C) of the Central Appalachians. 5Within a defined index period, respiration was not significantly different between years, and was significantly correlated with stream temperature and chemistry (DOC, total N, total P, K, Cl, and alkalinity). 6The uniformity of respiration estimates among the three study regions suggests that sediment microbial respiration may be collected at any number of scales above the site-level for reliable prediction of respiration patterns at larger spatial scales. [source] Do woodlice and earthworms interact synergistically in leaf litter decomposition?FUNCTIONAL ECOLOGY, Issue 1 2005MARTIN ZIMMER Summary 1In laboratory microcosms, we investigated the influence of diversity of both leaf litter and detritivores on decomposition processes. Either woodlice or earthworms, or a combination of woodlice and earthworms, fed on leaf litter of either oak or alder, or oak and alder for 8 weeks. Mass loss of leaf litter, soil microbial respiration and soil nutrient concentrations were determined every 2 weeks. 2For four out of seven decomposition parameters, the joint effects of woodlice and earthworms were stronger than the sum of single-species effects when they had fed on alder litter. When feeding on oak litter, however, woodlice and earthworms together revealed lower decomposition rates than predicted from their single effects. Joint effects of detritivores on decomposition of mixed litter were always lower than predicted from the sum of their effects. 3In mixed-litter assays, we obtained intermediate values of decomposition parameters, indicating that doubling the species richness of leaf litter from one to two species did not promote decomposition processes. Effects of mixing litter were, thus, mostly additive; essentially only when earthworms fed on mixed litter we observed, mostly positive, non-additive effects of diverse litter. 4Our findings provide evidence for a potential effect on ecosystem functioning through joint action of detritivores even at low species diversity, while litter diversity seems to be less significant. On high-quality litter, isopods and earthworms are not functionally redundant but act synergistically on litter decomposition. The effects of detritivore diversity on ecosystem processes, however, are context-specific and depend on the quality and diversity of the available food sources, and on species-specific characteristics of the detritivores. [source] Climatic controls on the carbon and water balances of a boreal aspen forest, 1994,2003GLOBAL CHANGE BIOLOGY, Issue 3 2007ALAN G. BARR Abstract The carbon and water budgets of boreal and temperate broadleaf forests are sensitive to interannual climatic variability and are likely to respond to climate change. This study analyses 9 years of eddy-covariance data from the Boreal Ecosystem Research and Monitoring Sites (BERMS) Southern Old Aspen site in central Saskatchewan, Canada and characterizes the primary climatic controls on evapotranspiration, net ecosystem production (FNEP), gross ecosystem photosynthesis (P) and ecosystem respiration (R). The study period was dominated by two climatic extremes: extreme warm and cool springs, which produced marked contrasts in the canopy duration, and a severe, 3-year drought. Annual FNEP varied among years from 55 to 367 g C m,2 (mean 172, SD 94). Interannual variability in FNEP was controlled primarily by factors that affected the R/P ratio, which varied between 0.74 and 0.96 (mean 0.87, SD 0.06). Canopy duration enhanced P and FNEP with no apparent effect on R. The fraction of annual photosynthetically active radiation (PAR) that was absorbed by the canopy foliage varied from 38% in late leaf-emergence years to 51% in early leaf-emergence years. Photosynthetic light-use efficiency (mean 0.0275, SD 0.026 mol C mol,1 photons) was relatively constant during nondrought years but declined with drought intensity to a minimum of 0.0228 mol C mol,1 photons during the most severe drought year. The impact of drought on FNEP varied with drought intensity. Years of mild-to-moderate drought suppressed R while having little effect on P, so that FNEP was enhanced. Years of severe drought suppressed both R and P, causing either little change or a subtle reduction in FNEP. The analysis produced new insights into the dominance of canopy duration as the most important biophysical control on FNEP. The results suggested a simple conceptual model for annual FNEP in boreal deciduous forests. When water is not limiting, annual P is controlled by canopy duration via its influence on absorbed PAR at constant light-use efficiency. Water stress suppresses P, by reducing light-use efficiency, and R, by limiting growth and/or suppressing microbial respiration. The high photosynthetic light-use efficiency showed this site to be a highly productive boreal deciduous forest, with properties similar to many temperate deciduous forests. [source] The microfood web of grassland soils responds to a moderate increase in atmospheric CO2GLOBAL CHANGE BIOLOGY, Issue 7 2005Ilja Sonnemann Abstract The response of the soil microfood web (microflora, nematodes) to a moderate increase in atmospheric CO2 (+20%) was investigated by means of a free air CO2 enrichment experiment. The study was carried out in a seminatural temperate grassland for a period of 4 consecutive years (1 year before fumigation commenced and 3 years with fumigation). Several soil biological parameters showed no change (microbial biomass, bacterial biomass) or decline (microbial respiration) in the first year of elevated CO2 treatment as compared with controls. Each of these parameters were higher than controls, however, after 3 years of treatment. The relative abundance of predaceous nematodes also decreased in year 1 of the experiment, increased in year 2, but decreased again in year 3. In contrast, the relative abundance of root hair feeding nematodes, at first, increased under elevated CO2 and then returned to the initial level again. Increased microbial biomass indicates enhanced C storage in the labile carbon pool of the active microfood web in subsequent years. According to measurements on the amounts of soil extractable C, changes in resource availability seem to be key to the response of the soil microfood web. We found a strong response of bacteria to elevated CO2, while the fungal biomass remained largely unchanged. This contrasts to findings reported in the literature. We hypothesize that this may be because of contrasting effects of different levels of CO2 enrichment on the microbial community (i.e. stimulation of bacteria at moderate levels and stimulation of fungi at high levels of CO2 enrichment). However, various CO2 effects observed in our study are similar in magnitude to those observed in other studies for a much higher level of atmospheric carbon. These include the particular sensitivity of predaceous nematodes and the long-term increase of microbial respiration. Our findings confirm that the potential of terrestrial ecosystems to accumulate additional carbon might be lower than previously thought. Furthermore, CO2 -induced changes of temperate grassland ecosystems might emerge much earlier than expected. [source] Linking microbial activity and soil organic matter transformations in forest soils under elevated CO2GLOBAL CHANGE BIOLOGY, Issue 2 2005S. A. Billings Abstract Soil organic matter (SOM) dynamics ultimately govern the ability of soil to provide long-term C sequestration and the nutrients required for ecosystem productivity. Predicting belowground responses to elevated CO2 requires an integrated understanding of SOM transformations and the microbial activity that governs them. It remains unclear how the microorganisms upon which these transformations depend will function in an elevated CO2 world. This study examines SOM transformations and microbial metabolism in soils from the Duke Free Air Carbon Enrichment site in North Carolina, USA. We assessed microbial respiration and net nitrogen (N) mineralization in soils with and without elevated CO2 exposure during a 100-day incubation. We also traced the depleted C isotopic signature of the supplemental CO2 into SOM and the soils' phospholipid fatty acids (PLFA), which serve as biomarkers for living cells. Cumulative net N mineralization in elevated CO2 soils was 50% that in control soils after a 100-day incubation. Respiration was not altered with elevated CO2. C : N ratios of bulk SOM did not change with elevated CO2, but incubation data suggest that the C : N ratios of mineralized organic matter increased with elevated CO2. Values of SOM ,13C were depleted with elevated CO2 (,26.7±0.2 vs. ,30.2±0.3,), reflecting the depleted signature of the supplemental CO2. We compared ,13C of individual PLFA with the ,13C of SOM to discern incorporation of the depleted C isotopic signature into soil microbial groups in elevated CO2 plots. PLFA i15:0, a15:0, and 10Met18:0 reflected significant incorporation of recently produced photosynthate, suggesting that the bacterial groups defined by these biomarkers are active metabolizers in elevated CO2 soils. At least one of these groups (actinomycetes, 10Met18:0) specializes in metabolizing less labile substrates. Because control plots did not receive an equivalent 13C tracer, we cannot determine from these data whether this group of organisms was stimulated by elevated CO2 compared with these organisms in control soils. Stimulation of this group, if it occurred in the elevated CO2 plot, would be consistent with a decline in the availability of mineralizable organic matter with elevated CO2, which incubation data suggest may be the case in these soils. [source] Thermal influence of urban groundwater recharge from stormwater infiltration basinsHYDROLOGICAL PROCESSES, Issue 12 2009Arnaud Foulquier Abstract Groundwater warming below cities has become a major environmental issue; but the effect of distinct local anthropogenic sources of heat on urban groundwater temperature distributions is still poorly documented. Our study addressed the local effect of stormwater infiltration on the thermal regime of urban groundwater by examining differences in water temperature beneath stormwater infiltration basins (SIB) and reference sites fed exclusively by direct infiltration of rainwater at the land surface. Stormwater infiltration dramatically increased the thermal amplitude of groundwater at event and season scales. Temperature variation at the scale of rainfall events reached 3 °C and was controlled by the interaction between runoff amount and difference in temperature between stormwater and groundwater. The annual amplitude of groundwater temperature was on average nine times higher below SIB (range: 0·9,8·6 °C) than at reference sites (range: 0,1·2 °C) and increased with catchment area of SIB. Elevated summer temperature of infiltrating stormwater (up to 21 °C) decreased oxygen solubility and stimulated microbial respiration in the soil and vadose zone, thereby lowering dissolved oxygen (DO) concentration in groundwater. The net effect of infiltration on average groundwater temperature depended upon the seasonal distribution of rainfall: groundwater below large SIB warmed up (+0·4 °C) when rainfall occurred predominantly during warm seasons. The thermal effect of stormwater infiltration strongly attenuated with increasing depth below the groundwater table indicating advective heat transport was restricted to the uppermost layers of groundwater. Moreover, excessive groundwater temperature variation at event and season scales can be attenuated by reducing the size of catchment areas drained by SIB and by promoting source control drainage systems. Copyright © 2009 John Wiley & Sons, Ltd. [source] Effect of nitrogen fertilisation on below-ground carbon allocation in lettuceJOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, Issue 13 2002Y Kuzyakov Abstract The aims of this study were to investigate the effect of nitrogen (N) fertilisation on the below-ground carbon (C) translocation by lettuce and the CO2 efflux from its rhizosphere. Two N fertilisation levels (80 and 160,kg N,ha,1) and two growth stages (43 and 60 days) were tested. 14C pulse labelling of shoots followed by 14C monitoring in the soil, roots, microbial biomass and CO2 efflux from the soil was used to distinguish between root-derived and soil organic matter-derived,C. The 14C allocation in the below-ground plant parts was 1.5,4.6 times lower than in the leaves. The total quantity of C translocated into the soil was much lower than in the case of cereals and grasses, amounting to 120 and 160,kg C,ha,1 for low and high N respectively. N fertilisation diminished the proportion of assimilated C translocated below ground. About 5,8% of the assimilated C was respired into the rhizosphere. Root-derived CO2 (the sum of root respiration and rhizomicrobial respiration) represented about 15,60% of the total CO2 efflux from the planted soil. Two peaks were measured in the 14CO2 efflux: the first peak (4,5,h after labelling) was attributed to root respiration, whilst the second peak (12,h after labelling) was attributed to microbial respiration of exudates. Twelve days after labelling, 0.15,0.25% of the assimilated C was found in the microbial biomass. The higher microbial activity in the lettuce rhizosphere doubled the soil organic matter decomposition rate compared with unplanted soil. © 2002 Society of Chemical Industry [source] |