Microbial Residues (microbial + residue)

Distribution by Scientific Domains


Selected Abstracts


Nitrogen biomarkers and their fate in soil,

JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 6 2003
Wulf Amelung
Abstract More than 90,% of the nitrogen (N) in soils can be organically bound, but the mechanisms and rates by which it is cycled have eluded researchers. The objective of this research was to contribute to a better understanding of the origin and transformation of soil organic N (SON) by using amino sugars and the enantiomers of amino acids as markers for microbial residues and/or aging processes. Studied samples presented here comprised (1) soil transects across different climates, (2) arable soils with different duration of cropping, and (3) radiocarbon-dated soil profiles. The results suggested that increased microbial alteration of SON temporarily results in a sequestration of N in microbial residues, which are mineralized at later stages of SON decomposition. Microorganisms increasingly sequestered N within intact cell wall residues as frost periods shortened. At a mean annual temperature above 12,15,°C, these residues were mineralized, probably due to limitations in additional substrates. Breaking the grassland for cropping caused rapid SON losses. Microbial residues were decomposed in preference to total N, this effect being enhanced at higher temperatures. Hence, climate and cultivation interactively affected SON dynamics. Nevertheless, not all SON was available to soil microorganisms. In soil profiles, L-aspartic acid and L-lysine slowly converted into their D-form, for lysine even at a similar rate in soils of different microbial activity. Formation of D-aspartate with time was, therefore, induced by microorganisms while that of D-lysine was not. The racemization of the two amino acids indicates that SON not available to microorganisms ages biotically and abiotically. In native soils, the latter is conserved for centuries, despite N deficiency frequently occurring in living terrestrial environments. Climate was not found to affect the fate of old protein constituents in surface soil. When native grassland was broken for cropping, however, old SON constituents had become available to microorganisms and were degraded. Stickstoff-Biomarker und ihre Dynamik im Boden Über 90,% des Stickstoffs im Boden können organisch gebunden sein. Um zu einem besseren Verständnis der Norg -Dynamik im Boden beitragen zu können, analysierte ich Aminozucker und Aminosäure-Enantiomere als Marker für mikrobielle N-Rückstände und/oder Alterungsprozesse von Norg im Boden. Das hier vorgestellte Untersuchungsmaterial umfasste (1) Bodentransekte entlang unterschiedlicher Klimate, (2) Ackerböden mit verschiedener Nutzungsdauer und (3) 14C-datierte Bodenprofile. Die Ergebnisse zeigten, dass mit fortschreitender Umwandlung des Norg mikrobielle N-Rückstände nur vorübergehend im Boden akkumulieren, da sie in späteren Abbauphasen wieder mineralisiert werden. Mikroorganismen bauten zunehmend N in intakte Zellwandrückstände ein, wenn sich die Frostperioden verkürzten. Bei einer Jahresmitteltemperatur über 12,15,°C sank der Beitrag mikrobieller Rückstände zum N-Gehalt, vermutlich weil Mikroorganismen diese mangels anderer Substrate verstärkt mineralisierten. Umbrüche von Gras- zu Ackerland führten zu raschen N-Verlusten. Mikrobielle N-Rückstände wurden bevorzugt abgebaut, ein Effekt, den höhere Temperaturen verstärkten. Demnach steuerte das Klima die Intensität von Nutzungseffekten auf die Norg -Dynamik. Doch nicht der gesamte Norg war für Mikroorganismen zugänglich. Der D-Gehalt von Asparaginsäure und Lysin nahm mit steigendem Alter der organischen Bodensubstanz zu, Lysin racemisierte in den verschiedenen Böden sogar mit gleicher Geschwindigkeit. Anders als die Bildung von D-Asparaginsäure wurde die von Lysin also nicht durch Mikroorganismen beeinflusst. Die Racemisierung der beiden Aminosäuren deutet deshalb darauf hin, dass nicht-bioverfügbare Norg -Bestandteile biotisch und abiotisch im Boden altern. Klimaeinwirkungen auf den Verbleib alter Proteinrückstände ließen sich nicht feststellen. Mit Umbruch von Gras- zu Ackerland erhielten Mikroorganismen allerdings Zugang zu alten Norg -Verbindungen und bauten diese ab. [source]


Fate of microbial residues in sandy soils of the South African Highveld as influenced by prolonged arable cropping

EUROPEAN JOURNAL OF SOIL SCIENCE, Issue 1 2002
W. Amelung
Summary Long-term cultivation of former grassland soils results in a significant decline of both living and dead microbial biomass. We evaluated the effect of duration of cropping on the preservation of fungal and bacterial residues in the coarse-textured soils of the South African Highveld. Composite samples were taken from the top 20 cm of soils (Plinthustalfs) that have been cropped for periods varying from 0 to 98 years in each of three different agro-ecosystems in the Free State Province. Amino sugars were determined as markers for the microbial residues in bulk soil and its particle-size fractions. Long-term cultivation reduced N in the soil by 55% and the contents of amino sugars by 60%. Loss rates of amino sugars followed bi-exponential functions, suggesting that they comprised both labile and stable fractions. With increased duration of cropping the amino sugars attached to silt dissipated faster than those associated with the clay. This dissipation was in part because silt was preferentially lost through erosion, while clay particles (and their associated microbial residues) remained. Erosion was not solely responsible for the reduction in amino sugar concentrations, however. Bacterial amino sugars were lost in preference to fungal ones as a result of cultivation, and this effect was evident in both silt- and clay-sized separates. This shift from fungal to bacterial residues was most pronounced within the first 20 years after converting the native grassland to arable cropland, but continued after 98 years of cultivation. [source]


Nitrogen biomarkers and their fate in soil,

JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 6 2003
Wulf Amelung
Abstract More than 90,% of the nitrogen (N) in soils can be organically bound, but the mechanisms and rates by which it is cycled have eluded researchers. The objective of this research was to contribute to a better understanding of the origin and transformation of soil organic N (SON) by using amino sugars and the enantiomers of amino acids as markers for microbial residues and/or aging processes. Studied samples presented here comprised (1) soil transects across different climates, (2) arable soils with different duration of cropping, and (3) radiocarbon-dated soil profiles. The results suggested that increased microbial alteration of SON temporarily results in a sequestration of N in microbial residues, which are mineralized at later stages of SON decomposition. Microorganisms increasingly sequestered N within intact cell wall residues as frost periods shortened. At a mean annual temperature above 12,15,°C, these residues were mineralized, probably due to limitations in additional substrates. Breaking the grassland for cropping caused rapid SON losses. Microbial residues were decomposed in preference to total N, this effect being enhanced at higher temperatures. Hence, climate and cultivation interactively affected SON dynamics. Nevertheless, not all SON was available to soil microorganisms. In soil profiles, L-aspartic acid and L-lysine slowly converted into their D-form, for lysine even at a similar rate in soils of different microbial activity. Formation of D-aspartate with time was, therefore, induced by microorganisms while that of D-lysine was not. The racemization of the two amino acids indicates that SON not available to microorganisms ages biotically and abiotically. In native soils, the latter is conserved for centuries, despite N deficiency frequently occurring in living terrestrial environments. Climate was not found to affect the fate of old protein constituents in surface soil. When native grassland was broken for cropping, however, old SON constituents had become available to microorganisms and were degraded. Stickstoff-Biomarker und ihre Dynamik im Boden Über 90,% des Stickstoffs im Boden können organisch gebunden sein. Um zu einem besseren Verständnis der Norg -Dynamik im Boden beitragen zu können, analysierte ich Aminozucker und Aminosäure-Enantiomere als Marker für mikrobielle N-Rückstände und/oder Alterungsprozesse von Norg im Boden. Das hier vorgestellte Untersuchungsmaterial umfasste (1) Bodentransekte entlang unterschiedlicher Klimate, (2) Ackerböden mit verschiedener Nutzungsdauer und (3) 14C-datierte Bodenprofile. Die Ergebnisse zeigten, dass mit fortschreitender Umwandlung des Norg mikrobielle N-Rückstände nur vorübergehend im Boden akkumulieren, da sie in späteren Abbauphasen wieder mineralisiert werden. Mikroorganismen bauten zunehmend N in intakte Zellwandrückstände ein, wenn sich die Frostperioden verkürzten. Bei einer Jahresmitteltemperatur über 12,15,°C sank der Beitrag mikrobieller Rückstände zum N-Gehalt, vermutlich weil Mikroorganismen diese mangels anderer Substrate verstärkt mineralisierten. Umbrüche von Gras- zu Ackerland führten zu raschen N-Verlusten. Mikrobielle N-Rückstände wurden bevorzugt abgebaut, ein Effekt, den höhere Temperaturen verstärkten. Demnach steuerte das Klima die Intensität von Nutzungseffekten auf die Norg -Dynamik. Doch nicht der gesamte Norg war für Mikroorganismen zugänglich. Der D-Gehalt von Asparaginsäure und Lysin nahm mit steigendem Alter der organischen Bodensubstanz zu, Lysin racemisierte in den verschiedenen Böden sogar mit gleicher Geschwindigkeit. Anders als die Bildung von D-Asparaginsäure wurde die von Lysin also nicht durch Mikroorganismen beeinflusst. Die Racemisierung der beiden Aminosäuren deutet deshalb darauf hin, dass nicht-bioverfügbare Norg -Bestandteile biotisch und abiotisch im Boden altern. Klimaeinwirkungen auf den Verbleib alter Proteinrückstände ließen sich nicht feststellen. Mit Umbruch von Gras- zu Ackerland erhielten Mikroorganismen allerdings Zugang zu alten Norg -Verbindungen und bauten diese ab. [source]