Microbial Consortia (microbial + consortia)

Distribution by Scientific Domains


Selected Abstracts


Metagenome and mRNA expression analyses of anaerobic methanotrophic archaea of the ANME-1 group

ENVIRONMENTAL MICROBIOLOGY, Issue 2 2010
Anke Meyerdierks
Summary Microbial consortia mediating the anaerobic oxidation of methane with sulfate are composed of methanotrophic Archaea (ANME) and Bacteria related to sulfate-reducing Deltaproteobacteria. Cultured representatives are not available for any of the three ANME clades. Therefore, a metagenomic approach was applied to assess the genetic potential of ANME-1 archaea. In total, 3.4 Mbp sequence information was generated based on metagenomic fosmid libraries constructed directly from a methanotrophic microbial mat in the Black Sea. These sequence data represent, in 30 contigs, about 82,90% of a composite ANME-1 genome. The dataset supports the hypothesis of a reversal of the methanogenesis pathway. Indications for an assimilatory, but not for a dissimilatory sulfate reduction pathway in ANME-1, were found. Draft genome and expression analyses are consistent with acetate and formate as putative electron shuttles. Moreover, the dataset points towards downstream electron-accepting redox components different from the ones known from methanogenic archaea. Whereas catalytic subunits of [NiFe]-hydrogenases are lacking in the dataset, genes for an [FeFe]-hydrogenase homologue were identified, not yet described to be present in methanogenic archaea. Clustered genes annotated as secreted multiheme c -type cytochromes were identified, which have not yet been correlated with methanogenesis-related steps. The genes were shown to be expressed, suggesting direct electron transfer as an additional possible mode to shuttle electrons from ANME-1 to the bacterial sulfate-reducing partner. [source]


Development of specific oligonucleotide probes for the identification and in situ detection of hydrocarbon-degrading Alcanivorax strains

ENVIRONMENTAL MICROBIOLOGY, Issue 6 2001
Kazuaki Syutsubo
The genus Alcanivorax comprises diverse hydrocarbon-degrading marine bacteria. Novel 16S rRNA-targeted oligonucleotide DNA probes (ALV735 and ALV735-b) were developed to quantify two subgroups of the Alcanivorax/Fundibacter group by fluorescence in situ hybridization (FISH), and the conditions for the single-mismatch discrimination of the probes were optimized. The specificity of the probes was improved further using a singly mismatched oligonucleotide as a competitor. The growth of Alcanivorax cells in crude oil-contaminated sea water under the biostimulation condition was investigated by FISH with the probe ALV735, which targeted the main cluster of the Alcanivorax/Fundibacter group. The size of the Alcanivorax population increased with increasing incubation time and accounted for 91% of the 4,,6-diamidino-2-phenylindole (DAPI) count after incubation for 2 weeks. The probes developed in this study are useful for detecting Alcanivorax populations in petroleum hydrocarbon-degrading microbial consortia. [source]


The Prestige oil spill.

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 9 2005

Abstract In vitro biodegradation of the Prestige heavy fuel oil has been carried out using two microbial consortia obtained by enrichment in different substrates to simulate its environmental fate and potential utility for bioremediation. Different conditions, such as incubation time (i.e., 20 or 40 d), oil weathering, and addition of an oleophilic fertilizer (S200), were evaluated. Weathering slowed down the degradation of the fuel oil, probably because of the loss of lower and more labile components, but the addition of S200 enhanced significantly the extension of the biodegradation. n -Alkanes, alkylcyclohexanes, alkylbenzenes, and the two- to three-ring polycyclic aromatic hydrocarbons (PAHs) were degraded in 20 or 40 d of incubation of the original oil, whereas the biodegradation efficiency decreased for higher PAHs and with the increase of alkylation. Molecular markers were degraded according to the following sequence: Acyclic isoprenoids < diasteranes < C27 -steranes < ,,-steranes < homohopanes < monoaromatic steranes < triaromatic steranes. Isomeric selectivity was observed within the C1 - and C2 -phenanthrenes, dibenzothiophenes, pyrenes, and chrysenes, providing source and weathering indices for the characterization of the heavy oil spill. Acyclic isoprenoids, C27 -steranes, C1 - and C2 -naphthalenes, phenanthrenes, and dibenzothiophenes were degraded completely when S200 was used. The ratios of the C2 - and C3 -alkyl homologues of fluoranthene/pyrene and chrysene/benzo[a]anthracene are proposed as source ratios in moderately degraded oils. The 4-methylpyrene and 3-methylchrysene were refractory enough to serve as conserved internal markers in assessing the degradation of the aromatic fraction in a manner similar to that of hopane, as used for the aliphatic fraction. [source]


A trophic pathway from biogenic methane supports fish biomass in a temperate lake ecosystem

OIKOS, Issue 2 2010
Mark Ravinet
Although some primary consumers such as chironomid larvae are known to exploit methane-derived carbon via microbial consortia within aquatic food webs, few studies have traced the onward transfer of such carbon to their predators. The ruffe Gymnocephalus cernuus is a widespread benthivorous fish which feeds predominantly on chironomid larvae and is well adapted for foraging at lower depths than other percids. Therefore, any transfer of methanogenic carbon to higher trophic levels might be particularly evident in ruffe. We sampled ruffe and chironomid larvae from the littoral, sub-littoral and profundal areas of Jyväsjärvi, Finland, a lake which has previously been shown to contain chironomid larvae exhibiting the very low stable carbon isotope ratios indicative of methane exploitation. A combination of fish gut content examination and stable isotope analysis was used to determine trophic linkages between fish and their putative prey. Irrespective of the depth from which the ruffe were caught, their diet was dominated by chironomids and pupae although the proportions of taxa changed. Zooplankton made a negligible contribution to ruffe diet. A progressive decrease in ,13C and ,15N values with increasing water column depth was observed for both chironomid larvae and ruffe, but not for other species of benthivorous fish. Furthermore, ruffe feeding at greater depths were significantly larger than those feeding in the littoral, suggesting an ontogenetic shift in habitat use, rather than diet, as chironomids remained the predominant prey item. The outputs from isotope mixing models suggested that the incorporation of methane-derived carbon to larval chironomid biomass through feeding on methanotrophic bacteria increased at greater depth, varying from 0% in the littoral to 28% in the profundal. Using these outputs and the proportions of littoral, sub-littoral or profundal chironomids contributing to ruffe biomass, we estimated that 17% of ruffe biomass in this lake was ultimately derived from chemoautotrophic sources. Methanogenic carbon thus supports considerable production of higher trophic levels in lakes. [source]