Microbial Characteristics (microbial + characteristic)

Distribution by Scientific Domains


Selected Abstracts


The effect of cleaning and disinfecting the sampling well on the microbial communities of deep subsurface water samples

ENVIRONMENTAL MICROBIOLOGY, Issue 1 2005
Odile Basso
Summary Our knowledge of the microbial characteristics of deep subsurface waters is currently very limited, mainly because of the methods used to collect representative microbial samples from such environments. In order to improve this procedure, a protocol designed to remove the unspecific, contaminant biofilm present on the walls of an approximately 800 m deep well is proposed. This procedure included extensive purges of the well, a mechanical cleaning of its wall, and three successive chlorine injections to disinfect the whole line before sampling. Total bacterial counts in water samples decreased from 2.5 × 105 to 1.0 × 104 per millilitre during the cleaning procedure. Culture experiments showed that the first samples were dominated by sulfate-reducers and heterotrophs, whereas the final sample was dominated by oligotrophic and hydrogenotrophic bacteria. Community structures established on the diversity of the 16S rRNA genes and data analysis revealed that the water sample collected, after a purge without removal of the biofilm, was characterized by numerous phyla which are not representative of the deep subsurface water. On the other hand, several bacterial phyla were only detected after the full cleaning of the well, and were considered as important components of the subsurface ecosystem which would have been missed in the absence of well cleaning. [source]


Degradation of chlorpyrifos, fenamiphos, and chlorothalonil alone and in combination and their effects on soil microbial activity

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 12 2002
Brajesh Kumar Singh
Abstract The effects of repeated application and of combinations of pesticides on their degradation rates in soil and on some soil microbial properties were studied. Repeated application of chlorpyrifos did not modify its degradation rate, whereas repeated applications of fenamiphos and chlorothalonil suppressed their own rates of degradation. When applied in combination, the presence of chlorothalonil reduced the degradation rate of both chlorpyrifos and fenamiphos, and the half-life of chlorothalonil was extended in the presence of chlorpyrifos. The dynamics of residues of the major metabolites of the different compounds were also affected by the pesticide combinations and, particularly, by the presence of chlorothalonil. The measured soil microbial parameters (enzyme activities and total microbial biomass) were stable in the pesticide-free control soils throughout the 90-d incubation period, but they were all adversely affected by the presence of chlorothalonil in the soil. The effects from fenamiphos or chlorpyrifos on the soil microbial characteristics were either very small or insignificant. [source]


ISOLATION AND CHARACTERIZATION OF BACTERIOCIN-PRODUCING MICROORGANISMS FROM AGOS-OS

JOURNAL OF FOOD SAFETY, Issue 3 2000
JULIE D. TAN
ABSTRACT Agos-os, a fermented meat and sweetpotato mixture, was produced and analyzed for its microbial characteristics. pH decreased during fermentation. Mold and anaerobic bacterial counts increased while yeasts and aerobic bacterial counts decreased during the third and seventh day of fermentation. Six isolates with the widest zones of inhibition on the indicator lawn were selected for bacteriocin production. These isolates had exactly the same morphological, physiological and biochemical characteristics. The ribosomal RNA sequence was 99.5% identical with Enterococcus faecalis VRE 1492. The identification was confirmed through DNA homology test by the EMBL Genbank, Canada. This bacterium produced the L-isomer lactic acid. The amount of bacteriocin produced by the bacterium was optimized by growing the bacterium at different growth media, initial pH and fermentation time. Maximum production of bacteriocin was achieved in MRS (De Man Rugosa and Sharpe) medium (with glucose) at pH 7.50. The crude bacteriocin inhibited the growth of gram-positive bacteria such as Lactobacillus sake 15521 and Listeria innocua. The gram-negative bacteria such as Escherichia coli DH 5-alpha (with plasmid, PUC), Salmonella typhii and Staphylococcus aureus were weakly inhibited. Other microorganisms such as Lactobacillus curvatus D31685, Lactobacillus confusius M23036, Lactococcus lactis MG1363, Leuconostoc paramesenteroides S67831, Pediococcus pentosaceus M58834, Saccharomyces cerevisiae SS553 (wild type) and Escherichia coli JM109 (no plasmid) were not inhibited. [source]


Effect of Modified Atmosphere Packaging and Soluble Gas Stabilization on the Shelf Life of Skinless Chicken Breast Fillets

JOURNAL OF FOOD SCIENCE, Issue 2 2006
Bjørn T. Rotabakk
ABSTRACT The suitability of soluble gas stabilization (SGS) to dissolve CO2 into skinless chicken breast fillets before modified atmosphere (MA) packaging (MAP) was investigated. Head space gas composition (%), top web deflation (mm), muscle surface color (Minolta L*a*b*), pH, exudates in the packages (%), microbial characteristics, and off-odor were assessed in the packaged fillets. Increased SGS treatment time (2 versus 12 h) before MA packaging increased the CO2 content in the packaged fillets and counteracted package collapse. High package filling degree (51.8%) (low gas to product volume ratio) gave significantly (P < 0.001) lower CO2 content in head space than normal filling degree (29.7%). Color, pH, and package exudates were not affected by SGS treatment. Aerobic plate count (APC), Enterbacteriaceae count (EC), and lactic acid bacteria (LAB) increased significantly (P < 0.001) at each sampling during storage (5, 11, 17, and 24 d). SGS treatment significantly (P < 0.015) decreased APC, EC, and Pseudomonas spp. counts (PC) compared with no SGS treatment. Filling degree did not have a significant effect on the investigated microbiological characteristics. Off-odor scores correlated highest with EC (r2(adj)= 0.82). Fillets SGS treated in 12 h were the only one not rejected at off-odor evaluation on day 24. The samples stored in air spoiled after 5 d. SGS treatment in combination with MAP can be used successfully on chicken breast fillets to improve the microbiological (APC, EC, and PC) and sensorial characteristics, and in addition reduce package collapse and possibly increase the filling degree. [source]