Home About us Contact | |||
Microarray Format (microarray + format)
Selected AbstractsA chip-based miniaturized format for protein-expression profiling: The exploitation of comprehensively produced antibodiesELECTROPHORESIS, Issue 18 2006Hisashi Koga Dr. Abstract Numerous antibodies have been developed and validated in recent years, and show promise for use in novel functional protein assays. Such assays would be an alternative to pre-existing comprehensive assays, such as DNA microarrays. Antibody microarrays are thought to represent those functional protein assays. While a variety of attempts have been made to apply DNA microarray technology to antibody microarrays, a fully optimized protocol has not been established. We have been conducting a project to comprehensively produce antibodies against mouse KIAA ("KI" stands for "Kazusa DNA Research Institute" and "AA" are reference characters) proteins. Using our library of antibodies, we established a novel antibody microarray format that utilizes surface plasmon resonance (SPR) technology. A label-free real-time measurement of protein expression in crude cell lysates was achieved by direct readout of the bindings using SPR. Further refinement of the antibody microarray format enabled us to detect a smaller quantity of target proteins in the lysate without the bulk effect. In this review, we first summarize available antibody array formats and then describe the above-mentioned format utilizing updated SPR technology. [source] Polymeric Aqueous Biphasic Systems for Non-Contact Cell Printing on Cells: Engineering Heterocellular Embryonic Stem Cell NichesADVANCED MATERIALS, Issue 24 2010Hossein Tavana An optimized polymeric aqueous two-phase system allows direct and non-contact printing of cells onto a monolayer of living cells in arbitrary shapes as well as in a high-density microarray format to create heterocellular microenvironments and study the effect of direct cell,cell interactions on cell fate. The entire process is performed in aqueous media to support full cell viability and functionality. [source] High-throughput enzyme kinetics using microarraysISRAEL JOURNAL OF CHEMISTRY, Issue 2 2007Guoxin Lu We report a microanalytical method to study enzyme kinetics. The technique involves immobilizing horseradish peroxidase on a poly-L-lysine (PLL)-coated glass slide in a microarray format, followed by applying substrate solution onto the enzyme microarray. Enzyme molecules are immobilized on the PLL-coated glass slide through electrostatic interactions, and no further modification of the enzyme or glass slide is needed. In situ detection of the products generated on the enzyme spots is made possible by monitoring the light intensity of each spot using a scientific-grade charged-coupled device (CCD). Reactions of substrate solutions of various types and concentrations can be carried out sequentially on one enzyme microarray. To account for the loss of enzyme from washing in between runs, a standard substrate solution is used for calibration. Substantially reduced amounts of substrate solution are consumed for each reaction on each enzyme spot. The Michaelis constant Km obtained by using this method is comparable to the result for homogeneous solutions. Absorbance detection allows universal monitoring, and no chemical modification of the substrate is needed. High-throughput studies of native enzyme kinetics for multiple enzymes are therefore possible in a simple, rapid, and low-cost manner. [source] Factors underpinning the responsiveness and higher levels of virus resistance realised in potato genotypes carrying virus-specific R genesANNALS OF APPLIED BIOLOGY, Issue 2 2010A.L. Vuorinen Responses to Potato virus A (PVA, genus Potyvirus) segregate to three phenotypic groups in a diploid cross between Solanum tuberosum subsp. andigena and a highly interspecific potato hybrid. The aim of this study was to compare gene expression between the progeny genotypes which react with hypersensitive response (HR) to PVA, allow PVA accumulation in inoculated leaves but restrict PVA infection to the inoculated leaf by blocking systemic movement [non-necrotic resistance (nnr)], or are susceptible (S) and systemically infected with PVA. Expression levels of ca 10 000 genes were compared using probes arranged in a microarray format, and real-time RT-PCR was applied for quantitative comparison of the expression of selected defense-related genes (DRGs). Results showed that a few DRGs were autoactivated in HR genotypes at an early stage of plant growth in the absence of PVA infection, which was not observed in the two other phenotypic groups (nnr and S). More detailed studies on the DRGs encoding a beta-1,3-glucanase, a chitinase and a basic PR-1b protein showed that autoactivation of the genes was not evident in vitro and up to 2 weeks of growth in soil in a controlled growth cabinet but was apparent 2 weeks later. Hence, autoinduction of these DRGs in the HR genotypes could be associated with growth stage, environmental factors or both. Furthermore, a number of other DRGs were induced in the inoculated leaves of HR genotypes as a response to infection with PVA, which was not observed in nnr and S genotypes. These results provide some novel information about factors underpinning the higher levels of virus resistance realised in potato genotypes carrying virus-specific R genes and suggest that part of the resistance is attributable to additional ,minor' genes functioning simultaneously, hence adding to the overall responsiveness and level of resistance against infection. These results also imply that some genotypes might be more responsive to chemical induction of pathogen and pest resistance, which could be considered in screening of progenies in plant-breeding programs. [source] Multiplex pathogen detection based on spatially addressable microarrays of barcoded resinsBIOTECHNOLOGY JOURNAL, Issue 7 2008David R. Blais Abstract Suspension microsphere immunoassays are rapidly gaining recognition in antigen identification and infectious disease biodetection due to their simplicity, versatility and high-throughput multiplex screening. We demonstrate a multiplex assay based on antibody-functionalized barcoded resins (BCRs) to identify pathogen antigens in complex biological fluids. The binding event of a particular antibody on given bead (fluorescence) and the identification of the specific pathogen agent (vibrational fingerprint of the bead) can be achieved in a dispersive Raman system by exciting the sample with two different laser lines. Anthrax protective antigen, Franciscella tularensis lipopolysaccharide and CD14 antigens were accurately identified and quantified in tetraplex assays with a detection limit of 1 ng/mL. The rapid, versatile and simple analysis enabled by the BCRs demonstrates their potential for multiplex antigen detection and identification in a reconfigurable microarray format. [source] Photo-Cross-Linked Small-Molecule Microarrays as Chemical Genomic Tools for Dissecting Protein,Ligand InteractionsCHEMISTRY - AN ASIAN JOURNAL, Issue 6 2006Naoki Kanoh Dr. Abstract We have developed a unique photo-cross-linking approach for immobilizing a variety of small molecules in a functional-group-independent manner. Our approach depends on the reactivity of the carbene species generated from trifluoromethylaryldiazirine upon UV irradiation. It was demonstrated in model experiments that the photogenerated carbenes were able to react with every small molecule tested, and they produced multiple conjugates in most cases. It was also found in on-array immobilization experiments that various small molecules were immobilized, and the immobilized small molecules retained their ability to interact with their binding proteins. With this approach, photo-cross-linked microarrays of about 2000 natural products and drugs were constructed. This photo-cross-linked microarray format was found to be useful not merely for ligand screening but also to study the structure,activity relationship, that is, the relationship between the structural motif (or pharmacophore) found in small molecules and its binding affinity toward a protein, by taking advantage of the nonselective nature of the photo-cross-linking process. [source] |