Home About us Contact | |||
Microarray Analysis (microarray + analysis)
Kinds of Microarray Analysis Selected AbstractsAlcohol Effects on Central Nervous System Gene Expression in Genetic Animal ModelsALCOHOLISM, Issue 2 2005William J. McBride This article summarizes the proceedings of a symposium presented at the 2004 annual meeting of the Research Society on Alcoholism in Vancouver, British Columbia, Canada. The organizers and chairs were William J. McBride and Michael F. Miles. The presentations were (1) Molecular Triangulation on Gene Expression Patterns in Behavioral Responses to Acute Ethanol, by Robnet T. Kerns; (2) Gene Expression in Limbic Regions After Ethanol Self-Infusion Into the Posterior Ventral Tegmental Area, by Zachary A. Rodd; (3) Microarray Analysis of CNS Limbic Regions of Inbred Alcohol-Preferring and -Nonpreferring rats and Effects of Alcohol Drinking, by Wendy N. Strother and Howard J. Edenberg; and (4) Microarray Analysis of Mouse Lines Selected for Chronic Ethanol Withdrawal Severity: The Convergence of Basal, Ethanol Regulated, and Proximity to Ethanol Quantitative Trait Loci to Identify Candidate Genes, by Joel G. Hashimoto and Kristine M. Wiren. [source] Microarray Analysis of Ethanol-Treated Cortical Neurons Reveals Disruption of Genes Related to the Ubiquitin-Proteasome Pathway and Protein SynthesisALCOHOLISM, Issue 12 2004Ramana Gutala Background: Chronic ethanol abuse results in deleterious behavioral responses such as tolerance, dependence, reinforcement, sensitization, and craving. The objective of this research was to identify transcripts that are differentially regulated in ethanol-treated cortical neurons compared with controls by using a pathway-focused complementary DNA microarray. Methods: Cortical neurons were isolated from postconception day 14 C57BL/6 mouse fetuses and cultured according to a standard protocol. The cortical neuronal cells were treated with 100 mM ethanol for five consecutive days with a change of media every day. A homeostatic pathway-focused microarray consisting of 638 sequence-verified genes was used to measure transcripts differentially regulated in four ethanol-treated cortical neuron samples and four control samples. Quantitative real-time reverse transcriptase-polymerase chain reaction analysis was used to verify the mRNA expression levels of genes of interest detected from the microarray experiments. Results: We identified 56 down-regulated and 10 up-regulated genes in ethanol-treated cortical neurons relative to untreated controls at a 5% false-discovery rate. The expression of many genes involved in ubiquitin-proteasome and protein synthesis was decreased by ethanol, including ubiquitin B, ubiquitin-like 3, ubiquitin-conjugating enzyme E3A, 20S proteasome ,- and ,-subunits, and members of the ribosomal proteins. Furthermore, the mRNA expression of heat shock proteins, myristoylated alanine-rich protein kinase C substrate, phosphatase and tensin homolog deleted on chromosome 10, and FK506 binding protein rapamycin-associated protein (FKBP) (mTOR) was also decreased in ethanol-treated cortical neurons. Quantitative real-time reverse transcriptase-polymerase chain reaction analysis of genes involved in the ubiquitin-proteasome cascade revealed a down-regulation of these genes, thereby corroborating our microarray results. Conclusions: Our results indicate that chronic ethanol treatment of cortical neurons resulted in decreased mRNA expression of genes involving the ubiquitin-proteasome pathway and ribosomal proteins together with mTOR expression leading to disruption of protein degradation mechanism and impairment of protein synthesis machinery. [source] Gene Expression in Human Alcoholism: Microarray Analysis of Frontal CortexALCOHOLISM, Issue 12 2000Joanne M. Lewohl Background: Changes in brain gene expression are thought to be responsible for the tolerance, dependence, and neurotoxicity produced by chronic alcohol abuse, but there has been no large scale study of gene expression in human alcoholism. Methods: RNA was extracted from postmortem samples of superior frontal cortex of alcoholics and nonalcoholics. Relative levels of RNA were determined by array techniques. We used both cDNA and oligonucleotide microarrays to provide coverage of a large number of genes and to allow cross-validation for those genes represented on both types of arrays. Results: Expression levels were determined for over 4000 genes and 163 of these were found to differ by 40% or more between alcoholics and nonalcoholics. Analysis of these changes revealed a selective reprogramming of gene expression in this brain region, particularly for myelin-related genes which were down-regulated in the alcoholic samples. In addition, cell cycle genes and several neuronal genes were changed in expression. Conclusions: These gene expression changes suggest a mechanism for the loss of cerebral white matter in alcoholics as well as alterations that may lead to the neurotoxic actions of ethanol. [source] An Adaptive Single-step FDR Procedure with Applications to DNA Microarray AnalysisBIOMETRICAL JOURNAL, Issue 1 2007Vishwanath Iyer Abstract The use of multiple hypothesis testing procedures has been receiving a lot of attention recently by statisticians in DNA microarray analysis. The traditional FWER controlling procedures are not very useful in this situation since the experiments are exploratory by nature and researchers are more interested in controlling the rate of false positives rather than controlling the probability of making a single erroneous decision. This has led to increased use of FDR (False Discovery Rate) controlling procedures. Genovese and Wasserman proposed a single-step FDR procedure that is an asymptotic approximation to the original Benjamini and Hochberg stepwise procedure. In this paper, we modify the Genovese-Wasserman procedure to force the FDR control closer to the level alpha in the independence setting. Assuming that the data comes from a mixture of two normals, we also propose to make this procedure adaptive by first estimating the parameters using the EM algorithm and then using these estimated parameters into the above modification of the Genovese-Wasserman procedure. We compare this procedure with the original Benjamini-Hochberg and the SAM thresholding procedures. The FDR control and other properties of this adaptive procedure are verified numerically. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Transcriptional signatures in response to wheat germ agglutinin and starvation in Drosophila melanogaster larval midgutINSECT MOLECULAR BIOLOGY, Issue 1 2009H.-M. Li Abstract One function of plant lectins such as wheat germ agglutinin is to serve as defences against herbivorous insects. The midgut is one critical site affected by dietary lectins. We observed marked cellular, structural and gene expression changes in the midguts of Drosophila melanogaster third instar larvae that were fed wheat germ agglutinin. Some of these changes were similar to those observed in the midguts of starved D. melanogaster. Dietary wheat germ agglutinin caused shortening, branching, swelling, distortion and in some cases disintegration of the midgut microvilli. Starvation was accompanied primarily by shortening of the microvilli. Microarray analyses revealed that dietary wheat germ agglutinin evoked differential expression of 61 transcripts; seven of these were also differentially expressed in starved D. melanogaster. The differentially transcribed gene clusters in wheat germ agglutinin-fed larvae were associated with (1) cytoskeleton organization; (2) digestive enzymes; (3) detoxification reactions; and (4) energy metabolism. Four possible transcription factor binding motifs were associated with the differentially expressed genes. One of these exhibited substantial similarity to MyoD, a transcription factor binding motif associated with cellular structures in mammals. These results are consistent with the hypothesis that wheat germ agglutinin caused a starvation-like effect and structural changes of midgut cells of D. melanogaster third-instar larvae. [source] Epigenetic regulation and downstream targets of the Rhox5 homeobox geneINTERNATIONAL JOURNAL OF ANDROLOGY, Issue 5 2008S. Shanker Summary The discovery of the Rhox homeobox gene cluster on the X chromosome opens up new vistas in the regulation of reproductive processes in mammals. In mice, this cluster comprises more than 30 genes that are selectively expressed in reproductive tissues. A subset of Rhox genes are androgen and AR regulated in postnatal and adult Sertoli cells, making them candidates to mediate androgen-dependent steps during spermatogenesis. The best characterized of these androgen/AR-regulated genes is Rhox5 (Pem), the founding member of the Rhox gene cluster. Targeted deletion of Rhox5 in mice causes male subfertility marked by increased germ-cell apoptosis and decreased sperm count and motility. Microarray analyses identified a wide variety of genes regulated by Rhox5 in Sertoli cells. One of them is the tumour suppressor UNC5C, a pro-apoptotic molecule previously only known to be involved in brain development. Targeted deletion of Unc5c causes decreased germ-cell apoptosis in postnatal and adult testes, indicating that it also has a role in spermatogenesis and supporting a model in which Rhox5 promotes germ-cell survival by downregulating Unc5c. Rhox5 has two independently regulated promoters that have distinct expression patterns. The unique tissue-specific and developmentally regulated transcription pattern of these two promoters appear to be controlled by DNA methylation. Both promoters are methylated in tissues in which they are not expressed, suggesting that DNA methylation serves to repress Rhox5 expression in inappropriate cell types and tissues. In summary, the Rhox gene cluster is an epigenetically regulated set of genes encoding a large number of transcription factors that are strong candidates to regulate gametogenesis and other aspects of reproduction. [source] A free radical-generating system induces the cholesterol biosynthesis pathway: a role in Alzheimer's diseaseAGING CELL, Issue 2 2009Marķa Recuero Summary Oxidative stress, which plays a critical role in the pathogenesis of neurodegenerative diseases such as Alzheimer's disease (AD), is intimately linked to aging , the best established risk factor for AD. Studies in neuronal cells subjected to oxidative stress, mimicking the situation in AD brains, are therefore of great interest. This paper reports that, in human neuronal cells, oxidative stress induced by the free radical-generating xanthine/xanthine oxidase (X-XOD) system leads to apoptotic cell death. Microarray analyses showed a potent activation of the cholesterol biosynthesis pathway following reductions in the cell cholesterol synthesis caused by the X-XOD treatment; furthermore, the apoptosis was reduced by inhibiting 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) expression with an interfering RNA. The potential importance of this mechanism in AD was investigated by genetic association, and it was found that HMGCR, a key gene in cholesterol metabolism and among those most strongly upregulated, was associated with AD risk. In summary, this work presents a human cell model prepared to mimic the effect of oxidative stress in neurons that might be useful in clarifying the mechanism involved in free radical-induced neurodegeneration. Gene expression analysis followed by genetic association studies indicates a possible link among oxidative stress, cholesterol metabolism and AD. [source] Differential gene expression in senescing leaves of two silver birch genotypes in response to elevated CO2 and tropospheric ozonePLANT CELL & ENVIRONMENT, Issue 6 2010SARI KONTUNEN-SOPPELA ABSTRACT Long-term effects of elevated CO2 and O3 concentrations on gene expression in silver birch (Betula pendula Roth) leaves were studied during the end of the growing season. Two birch genotypes, clones 4 and 80, with different ozone growth responses, were exposed to 2× ambient CO2 and/or O3 in open-top chambers (OTCs). Microarray analyses were performed after 2 years of exposure, and the transcriptional profiles were compared to key physiological characteristics during leaf senescence. There were genotypic differences in the responses to CO2 and O3. Clone 80 exhibited greater transcriptional response and capacity to alter metabolism, resulting in better stress tolerance. The gene expression patterns of birch leaves indicated contrasting responses of senescence-related genes to elevated CO2 and O3. Elevated CO2 delayed leaf senescence and reduced associated transcriptional changes, whereas elevated O3 advanced leaf senescence because of increased oxidative stress. The combined treatment demonstrated that elevated CO2 only temporarily alleviated the negative effects of O3. Gene expression data alone were insufficient to explain the O3 response in birch, and additional physiological and biochemical data were required to understand the true O3 sensitivity of these clones. [source] Targeted deletion of Dicer disrupts lens morphogenesis, corneal epithelium stratification, and whole eye developmentDEVELOPMENTAL DYNAMICS, Issue 9 2009Yan Li Abstract Dicer, a ribonuclease essential for miRNA processing, is expressed abundantly in developing mouse cornea and lens. We studied the roles of Dicer and miRNAs in eye development by conditionally deleting the Dicer gene in the mouse lens and corneal epithelium. Adult Dicer conditional null (DicerCN) mice had severe microphthalmia with no discernible lens and a poorly stratified corneal epithelium. Targeted deletion of Dicer effectively inhibited miRNA processing in the developing lens at 12.5 day of embryogenesis (E12.5). Lens development initiated normally but underwent progressive dystrophy between E14.5 and E18.5. Microarray analysis revealed activation of P53 signaling in DicerCN lenses at E13.5, consistent with increased apoptosis and reduced cell proliferation between E12.5 and E14.5. Expression of Pax6 and other lens developmental transcription factors were not greatly affected between E12.5 and E14.5 but decreased as the lens degenerated. Our data indicated an indispensible role for Dicer and miRNAs in lens and corneal development. Developmental Dynamics 238:2388,2400, 2009. © 2009 Wiley-Liss, Inc. [source] Microarray analysis of retinoid-dependent gene activity during rat embryogenesis: Increased collagen fibril production in a model of retinoid insufficiencyDEVELOPMENTAL DYNAMICS, Issue 4 2004George R. Flentke Abstract Retinoic acid (RA) is an essential mediator of embryogenesis. Some, but not all, of its targets have been identified. We previously developed a rat model of gestational retinoid deficiency (RAD; Power et al. [1999] Dev. Dyn. 216:469,480) and generated embryos with developmental impairments that closely resemble genetic and dietary models of retinoid insufficiency. Here, we used microarray analysis and expression profiling to identify 88 transcripts whose abundance was altered under conditions of retinoid insufficiency, as compared with normal embryos. Among these, the induction by RAD of genes involved in collagen I synthesis (COL1A1, IA2 and VA2, prolyl-4-hydroxylase-,1) and protein galactosylation (galactokinase, ABO galactosyltransferase, UDP-galactose transporter-related protein) was especially noteworthy because extracellular matrix regulates many developmental events. We also identified several genes involved with stress responses (cathepsin H, UBC2E, IGFBP3, smoothelin). Real-time polymerase chain reaction analysis of selected candidates revealed excellent agreement with the array findings. Further validation came from the demonstration that these genes were similarly dysregulated in two genetic models of retinoid insufficiency, the retinol binding protein null-mutant embryo and the Raldh2 null-mutant embryo. In situ hybridization of RAD embryos found increased collagen IA1 and IGFBP3 mRNA within the connective mesenchyme and vasculature, respectively, and a failure to repress the growth factor midkine within the RAD neural tube. Many of the identified genes were not known previously to respond to retinoid status and will provide new insights to retinoid roles and to the consequences of retinoid insufficiency. Developmental Dynamics 229:886,898, 2004. © 2004 Wiley-Liss, Inc. [source] Developmental shifts in gene expression in the auditory forebrain during the sensitive period for song learningDEVELOPMENTAL NEUROBIOLOGY, Issue 7 2009Sarah E. London Abstract A male zebra finch begins to learn to sing by memorizing a tutor's song during a sensitive period in juvenile development. Tutor song memorization requires molecular signaling within the auditory forebrain. Using microarray and in situ hybridizations, we tested whether the auditory forebrain at an age just before tutoring expresses a different set of genes compared with later life after song learning has ceased. Microarray analysis revealed differences in expression of thousands of genes in the male auditory forebrain at posthatch day 20 (P20) compared with adulthood. Furthermore, song playbacks had essentially no impact on gene expression in P20 auditory forebrain, but altered expression of hundreds of genes in adults. Most genes that were song-responsive in adults were expressed at constitutively high levels at P20. Using in situ hybridization with a representative sample of 44 probes, we confirmed these effects and found that birds at P20 and P45 were similar in their gene expression patterns. Additionally, eight of the probes showed male,female differences in expression. We conclude that the developing auditory forebrain is in a very different molecular state from the adult, despite its relatively mature gross morphology and electrophysiological responsiveness to song stimuli. Developmental gene expression changes may contribute to fine-tuning of cellular and molecular properties necessary for song learning. © 2009 Wiley Periodicals, Inc. Develop Neurobiol 2009 [source] Regulation of FGF10 by POU transcription factor Brn3a in the developing trigeminal ganglionDEVELOPMENTAL NEUROBIOLOGY, Issue 10 2006Eric Cox Abstract The POU-domain transcription factor Brn3a is expressed in specific neurons of the caudal CNS and peripheral sensory nervous system. The sensory neurons of mice lacking Brn3a exhibit marked defects in axon growth and extensive apoptosis in lategestation. Here we show that expression of thedevelopmental regulator FGF10 is approximately 35-fold increased in the developing trigeminal ganglia of Brn3a-null mice. In order to determine whether FGF10 regulates other changes in gene expression observed in Brn3a knock-out ganglia, we have used a sensory-specific enhancer to over-express FGF10 in transgenic mice. Microarray analysis of trigeminal ganglia from individual transgenic founders effectivelyexcludes the cell-autonomous activity of FGF10 as a mechanism for mediating the downstream effects of the loss of Brn3a, probably because developing sensory neurons lack the appropriate type of FGF receptor. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006 [source] Altered gene expression in the brain and ovaries of zebrafish (Danio Rerio) exposed to the aromatase inhibitor fadrozole: Microarray analysis and hypothesis generation,,ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 8 2009Daniel L. Villeneuve Abstract As part of a research effort examining system-wide responses of the hypothalamic-pituitary-gonadal (HPG) axis in fish to endocrine-active chemicals (EACs) with different modes of action, zebrafish (Danio rerio) were exposed to 25 or 100 ,g/L of the aromatase inhibitor fadrozole for 24, 48, or 96 h. Global transcriptional response in brain and ovarian tissue of fish exposed to 25 ,g/L of fadrozole was compared to that in control fish using a commercially available, 22,000-gene oligonucleotide microarray. Transcripts altered in brain were functionally linked to differentiation, development, DNA replication, and cell cycle. Additionally, multiple genes associated with the one-carbon pool by folate pathway (KEGG 00670) were significantly up-regulated. Transcripts altered in ovary were functionally linked to cell-cell adhesion, extracellular matrix, vasculogenesis, and development. Promoter motif analysis identified GATA-binding factor 2, Ikaros 2, alcohol dehydrogenase gene regulator 1, myoblast-determining factor, and several heat shock factors as being associated with coexpressed gene clusters that were differentially expressed following exposure to fadrozole. Based on the transcriptional changes observed, it was hypothesized that fadrozole elicits neurodegenerative stress in brain tissue and that fish cope with this stress through proliferation of radial glial cells. Additionally, it was hypothesized that changes of gene expression in the ovary of fadrozole-exposed zebrafish reflect disruption of oocyte maturation and ovulation because of impaired vitellogenesis. These hypotheses and others derived from the microarray results provide a foundation for future studies aimed at understanding responses of the HPG axis to EACs and other chemical stressors. [source] Microarray analysis suggests the involvement of proteasomes, lysosomes, and matrix metalloproteinases in the response of motor neurons to root avulsionEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 8 2002Jian Hu Abstract We used microarray analysis of RNA expression from punch samples from ventral horn of spinal cord to identify alterations in gene expression in motor neurons 3 days after proximal spinal root avulsion, a traumatic injury that results in the death of 80% of the motor neurons. This analysis identified the anticipated increases in expression of genes coding for proteins involved in the apoptosis cascades and abortive cell cycle re-entry, as well as decreases in expression of genes coding for proteins related to neuronal functional activity, including groups of genes related to energy metabolism, transporter proteins, ion channels, and receptors. It was also found that cathepsins, metalloproteinases, and proteasome-related protein products were highly up-regulated in motor neurons following axotomy. Each of these products represent pathways that have been implicated in other models of neuronal damage, but which have not previously been described as a response to axotomy. [source] Increased bacterial load in shrimp hemolymph in the absence of prophenoloxidaseFEBS JOURNAL, Issue 18 2009Fernand F. Fagutao Invertebrates rely on their innate immune responses to protect themselves from pathogens, one of which is melanization of bacteria mediated by the activation of phenoloxidase (PO). Furthermore, invertebrate hemolymph, even that of healthy individuals, has been shown to contain bacterial species. The mechanisms that prevent these bacteria from proliferating and becoming deleterious to the host are, however, poorly understood. Here, we show that knocking down the activity of the inactive precursor of PO [prophenoloxidase (proPO)] by RNA interference resulted in a significant increase in the bacterial load of kuruma shrimp, Marsupenaeus japonicus, even in the absence of a bacterial or viral challenge. Silencing of proPO also led to a sharp increase in shrimp mortality. In addition, the hemolymph of proPO-depleted shrimp had significantly lower hemocyte counts and PO activity than control samples. Microarray analysis after proPO silencing also showed a decrease in the expression of a few antimicrobial peptides, but no effect on the expression of the genes involved in the clotting system. Treatment with antibiotics prior to and after proPO dsRNA injection, to counteract the loss of proPO, resulted in a significant increase in shrimp survival. Our results therefore show that the absence of proPO renders the shrimp incapable of controlling bacteria present in the hemolymph, and that proPO is therefore essential for its survival. [source] Profile of differentially expressed genes after transfer of chromosome 17 into the breast cancer cell line CAl51GENES, CHROMOSOMES AND CANCER, Issue 3 2005Christiane Klebig Previous studies have shown that transfer of chromosome 17 suppresses the tumorigenic phenotype of the breast cancer cell line CAL51, suggesting the presence of putative tumor suppressor genes on this chromosome. Suppression subtractive hybridization and oligonucleotide microarray analyses were performed to identify differentially expressed genes in nontumorigenic microcell hybrids, CAL/17-1 and CAL/17-3, when compared with CAL51 cells. In total, 263 differentially expressed transcripts were associated with these phenotypes. Of these, a high percentage is involved in various biological processes associated with tumorigenesis, including DNA-dependent regulation of transcription, regulation of cell cycle, signal transduction, and cell proliferation. Microarray analysis of selected chromosome 17 genes in a series of 25 human primary breast tumors showed associations with clinicopathologic parameters of the tumors. Of these genes, TOB1 (transducer of ERBB2) was selected for further expression analysis. Using RT-PCR and immunohistochemical staining of tissue microarrays, we could reveal a differential mRNA and protein expression of TOB1 in the majority of breast tumors and lymph node metastases compared with normal breast tissues, indicating a potential role of this protein in breast tumorigenesis. © 2005 Wiley-Liss, Inc. [source] Identification of amplified and expressed genes in breast cancer by comparative hybridization onto microarrays of randomly selected cDNA clonesGENES, CHROMOSOMES AND CANCER, Issue 1 2002Jeremy Clark Microarray analysis using sets of known human genes provides a powerful platform for identifying candidate oncogenes involved in DNA amplification events but suffers from the disadvantage that information can be gained only on genes that have been preselected for inclusion on the array. To address this issue, we have performed comparative genome hybridization (CGH) and expression analyses on microarrays of clones, randomly selected from a cDNA library, prepared from a cancer containing the DNA amplicon under investigation. Application of this approach to the BT474 breast carcinoma cell line, which contains amplicons at 20q13, 17q11,21, and 17q22,23, identified 50 amplified and expressed genes, including genes from these regions previously proposed as candidate oncogenes. When considered together with data from microarray expression profiles and Northern analyses, we were able to propose five genes as new candidate oncogenes where amplification in breast cancer cell lines was consistently associated with higher levels of RNA expression. These included the HB01 histone acetyl transferase gene at 17q22,23 and the TRAP100 gene, which encodes a thyroid hormone receptor-associated protein coactivator, at 17q11,21. The results demonstrate the utility of this microarray-based CGH approach in hunting for candidate oncogenes within DNA amplicons. © 2002 Wiley-Liss, Inc. [source] Peripheral myelin protein 22 is regulated post-transcriptionally by miRNA-29a,GLIA, Issue 12 2009Jonathan D. Verrier Abstract Peripheral myelin protein 22 (PMP22) is a dose-sensitive, disease-associated protein primarily expressed in myelinating Schwann cells. Either reduction or overproduction of PMP22 can result in hereditary neuropathy, suggesting a requirement for correct protein expression for peripheral nerve biology. PMP22 is post-transcriptionally regulated and the 3,untranslated region (3,UTR) of the gene exerts a negative effect on translation. MicroRNAs (miRNAs) are small regulatory molecules that function at a post-transcriptional level by targeting the 3,UTR in a reverse complementary manner. We used cultured Schwann cells to demonstrate that alterations in the miRNA biogenesis pathway affect PMP22 levels, and endogenous PMP22 is subjected to miRNA regulation. GW-body formation, the proposed cytoplasmic site for miRNA-mediated repression, and Dicer expression, an RNase III family ribonuclease involved in miRNA biogenesis, are co-regulated with the differentiation state of Schwann cells. Furthermore, the levels of Dicer inversely correlate with PMP22, while the inhibition of Dicer leads to elevated PMP22. Microarray analysis of actively proliferating and differentiated Schwann cells, in conjunction with bioinformatics programs, identified several candidate PMP22-targeting miRNAs. Here we demonstrate that miR-29a binds and inhibits PMP22 reporter expression through a specific miRNA seed binding region. Over-expression of miR-29a enhances the association of PMP22 RNA with Argonaute 2, a protein involved in miRNA function, and reduces the steady-state levels of PMP22. In contrast, inhibition of endogenous miR-29a relieves the miRNA-mediated repression of PMP22. Correlation analyses of miR-29 and PMP22 in sciatic nerves reveal an inverse relationship, both developmentally and in post-crush injury. These results identify PMP22 as a target of miRNAs and suggest that myelin gene expression by Schwann cells is regulated by miRNAs. © 2009 Wiley-Liss, Inc. [source] Activation of an IL-6:STAT3-dependent transcriptome in pediatric-onset inflammatory bowel diseaseINFLAMMATORY BOWEL DISEASES, Issue 4 2008Rebecca Carey MD Abstract Background: While activation of the IL-6-dependent transcription factor signal transducer and activator of transcription 3 (STAT3) has been implicated in the pathogenesis of inflammatory bowel disease (IBD), a direct effect on mucosal gene expression and inflammation has not been shown. We hypothesized that a proinflammatory IL-6:STAT3-dependent biological network would be up regulated in pediatric-onset IBD patients, and would be associated with the severity of mucosal inflammation. Methods: Patients with pediatric-onset IBD were enrolled at diagnosis and during therapy. Serum cytokine analysis was performed using Bioplex. STAT3 phosphorylation (pSTAT3) in peripheral blood leukocytes (PBLs) was assessed by flow cytometry. Immunohistochemistry of colonic mucosa was used to localize pSTAT3 and STAT3 target genes. Microarray analysis was used to determine RNA expression profiles from colon biopsies. Results: Circulating IL-6 was upregulated in active IBD patients at diagnosis and during therapy. STAT3 activation was increased in PB granulocytes, IL-6-stimulated CD3+/CD4+ lymphocytes, and affected colon biopsies of IBD patients. The frequency of pSTAT3+ PB granulocytes and colon epithelial and lamina propria cells was highly correlated with the degree of mucosal inflammation. Microarray and Ingenuity Systems bioinformatics analysis identified IL-6:STAT3-dependent biological networks upregulated in IBD patients which control leukocyte recruitment, HLA expression, angiogenesis, and tissue remodeling. Conclusions: A proinflammatory IL6:STAT3 biologic network is upregulated in active pediatric IBD patients at diagnosis and during therapy. Specific targeting of this network may be effective in reducing mucosal inflammation. (Inflamm Bowel Dis 2007) [source] Microarray analysis of acaricide-inducible gene expression in the southern cattle tick, Rhipicephalus (Boophilus) microplusINSECT MOLECULAR BIOLOGY, Issue 6 2008L. Saldivar Abstract Acaricide-inducible differential gene expression was studied in larvae of Rhipicephalus (Boophilus) microplus using a microarray-based approach. The acaricides used were: coumaphos, permethrin, ivermectin, and amitraz. The microarrays contained over 13 000 probes, having been derived from a previously described R. microplus gene index (BmiGI Version 2; Wang et al., 2007). Relative quantitative reverse transcriptase-PCR, real time PCR, and serial analysis of gene expression data was used to verify microarray data. Among the differentially expressed genes with informative annotation were legumain, glutathione S-transferase, and a putative salivary gland-associated protein. [source] Methylseleninic acid enhances the effect of etoposide to inhibit prostate cancer growth in vivoINTERNATIONAL JOURNAL OF CANCER, Issue 6 2007Oscar Gonzalez-Moreno Abstract New therapeutic agents are needed for the treatment of androgen-independent prostate cancer (PrCa). We have investigated the effect of methylseleninic acid (MSA) on tumor stage-specific prostate cells derived from the C3 (1)/Tag model for PrCa: Pr111, a slow-growing and nontumorigenic cell line isolated from a prostate intraepithelial neoplasia lesion; Pr14, a tumorigenic line derived from a primary tumor; and Pr14C1, a sub-clone of Pr14 explanted from a lung metastasis. We demonstrate that MSA strongly inhibits cell growth and induces apoptosis in C3 (1)/Tag tumor cells, in a dose-dependent manner. A decrease in phosphorylated ERK1/2 and AKT was also found in tumor cells, but not in Pr111. Microarray analysis using affymetrix showed that the number of genes with an altered expression in tumor cells is significantly higher (p < 0.01) than in nontumoral cells. Pathways analyses revealed a decrease in the expression of genes involved in metabolism (Fabp5, Cyba), signal transduction (ERK, AKT), angiogenesis (neuropilin-1, Flt-4) and transcription (cAMP response element-binding protein) in tumor cells. The expression of neuropilin-1, a protein involved in VEGF signaling and tumor angiogenesis, was 97-fold repressed in Pr14 cells treated with MSA. Combination treatments using low doses of etoposide or taxotere (docetaxel), plus low doses of MSA revealed a strong enhancement of cell growth inhibition and apoptosis in tumor cells. Our in vivo studies using Pr14 cells xenografted into nude mice demonstrated that MSA significantly enhances the chemotherapeutical effect of etoposide, resulting in 78.3% tumor growth inhibition. These results suggest that MSA could be used against PrCa to enhance the effect of etoposide. © 2007 Wiley-Liss, Inc. [source] Physiological and molecular analysis of the stress response of Saccharomyces cerevisiae imposed by strong inorganic acid with implication to industrial fermentationsJOURNAL OF APPLIED MICROBIOLOGY, Issue 1 2010H.F. De Melo Abstract Aims:, This work aimed to identify the molecular mechanism that allows yeast cells to survive at low pH environments such as those of bioethanol fermentation. Methods and Results:, The industrial strain JP1 cells grown at pH 2 was evaluated by microarray analysis showing that most of the genes induced at low pH were part of the general stress response (GSR). Further, an acid-tolerant yeast mutant was isolated by adaptive selection that was prone to grow at low pH in inorganic but weak organic acid. It showed higher viability under acid-temperature synergistic treatment. However, it was deficient in some physiological aspects that are associated with defects in protein kinase A (PKA) pathway. Microarray analysis showed the induction of genes involved in inhibition of RNA and protein synthesis. Conclusions:, The results point out that low pH activates GSR, mainly heat shock response, that is important for long-term cell survival and suggest that a fine regulatory PKA-dependent mechanism that might affect cell cycle in order to acquire tolerance to acid environment. Significance and Impact of the Study:, These findings might guide the construction of a high-fermentative stress-tolerant industrial yeast strain that can be used in complex industrial fermentation processes. [source] The contribution of hepatic steroid metabolism to serum estradiol and estriol concentrations in nonylphenol treated MMTVneu mice and its potential effects on breast cancer incidence and latencyJOURNAL OF APPLIED TOXICOLOGY, Issue 5 2005Ricardo Acevedo Abstract The two major pathways for the metabolism of estradiol-17, (E2) are the 2- and 16-hydroxylase pathways. Research has suggested that the increased production of the estrogenically active 16-hydroxy products such as estriol (E3) may be involved in increased susceptibility to breast cancer. 4-Nonylphenol (4-NP) is an environmental estrogen that also can activate the pregnane-X receptor (PXR) and induce P-450 enzymes responsible for the production of E3. It is hypothesized that 4-NP may act in part as an environmental estrogen by increasing E3 production. Based on its affinity for the estrogen receptor (ER) alone, 4-NP may be more potent than predicted at increasing mammary cancer incidence in the MMTVneu mouse. Female mice were treated per os for 7 days at 0, 25, 50 or 75 mg kg,1 day,1 4-NP to investigate the effects of 4-NP on hepatic estrogen metabolism after an acute treatment. 4-Nonylphenol increased the hepatic formation of E3 in a dose-dependent manner. However, serum E3 concentrations were only increased at 25 mg kg,1 day,1 presumably due to direct inhibition of E3 formation by 4-NP. MMTVneu mice were then treated for 32 weeks at 0, 30 or 45 mg kg,1 day,1 4-NP to determine its effects on mammary cancer formation and estrogen metabolism. 4-Nonylphenol increased mammary cancer formation in the MMTVneu mice at 45 mg kg,1 day,1 but not at 30 mg kg,1 day,1. Mice treated with an equipotent dose of E2, 10 µg kg,1 day,1, based on the relative binding affinities of nonylphenol and estradiol for ER,, did not develop mammary cancer. This suggests that nonylphenol is more potent than predicted based on its affinity for the estrogen receptor. However, no changes in serum E3 concentrations or hepatic E3 production were measured after the chronic treatment. Changes in E3 formation were correlated with increased CYP2B levels after the 7 day 4-NP treatment, and repression of CYP2B and CYP3A after 32 weeks of 4-NP treatment. Microarray analysis and Q-PCR of liver mRNA from the mice treated for 32 weeks demonstrated a decrease in RXR,, the heterodimeric partner of the PXR, which may in part explain the repressed transcription of the P450s measured. In conclusion, 4-NP treatment for 32 weeks increased mammary cancer formation at a dose of 45 mg kg,1 day,1. However, chronic treatment with 4-NP did not increase hepatic E3 formation or serum E3 concentrations. The transient induction by 4-NP of hepatic E3 formation and serum concentrations is most likely not involved in the increased incidence of mammary cancer in MMTVneu mice since E3 serum concentrations were only increased at 25 mg kg,1 day,1, a dose that was not sufficient to induce mammary tumor formation. Nevertheless, the induced hepatic E3 production in the acute exposures to 4-NP was indicative of an increase in mammary cancer incidence after the chronic exposure. Copyright © 2005 John Wiley & Sons, Ltd. [source] Identification of genes influencing skeletal phenotypes in congenic P/NP ratsJOURNAL OF BONE AND MINERAL RESEARCH, Issue 6 2010Imranul Alam Abstract We previously showed that alcohol-preferring (P) rats have higher bone density than alcohol-nonpreferring (NP) rats. Genetic mapping in P and NP rats identified a major quantitative trait locus (QTL) between 4q22 and 4q34 for alcohol preference. At the same location, several QTLs linked to bone density and structure were detected in Fischer 344 (F344) and Lewis (LEW) rats, suggesting that bone mass and strength genes might cosegregate with genes that regulate alcohol preference. The aim of this study was to identify the genes segregating for skeletal phenotypes in congenic P and NP rats. Transfer of the NP chromosome 4 QTL into the P background (P.NP) significantly decreased areal bone mineral density (aBMD) and volumetric bone mineral density (vBMD) at several skeletal sites, whereas transfer of the P chromosome 4 QTL into the NP background (NP.P) significantly increased bone mineral content (BMC) and aBMD in the same skeletal sites. Microarray analysis from the femurs using Affymetrix Rat Genome arrays revealed 53 genes that were differentially expressed among the rat strains with a false discovery rate (FDR) of less than 10%. Nine candidate genes were found to be strongly correlated (r2,>,0.50) with bone mass at multiple skeletal sites. The top three candidate genes, neuropeptide Y (Npy), , synuclein (Snca), and sepiapterin reductase (Spr), were confirmed using real-time quantitative PCR (qPCR). Ingenuity pathway analysis revealed relationships among the candidate genes related to bone metabolism involving ,-estradiol, interferon-,, and a voltage-gated calcium channel. We identified several candidate genes, including some novel genes on chromosome 4 segregating for skeletal phenotypes in reciprocal congenic P and NP rats. © 2010 American Society for Bone and Mineral Research [source] Krüppel-Like Zinc Finger Protein Glis3 Promotes Osteoblast Differentiation by Regulating FGF18 Expression,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 8 2007Ju Youn Beak Abstract The zinc finger protein Glis3 is highly expressed in human osteoblasts and acts synergistically with BMP2 and Shh in enhancing osteoblast differentiation in multipotent C3H10T1/2 cells. This induction of osteoblast differentiation is at least in part caused by the induction of FGF18 expression. This study supports a regulatory role for Glis3 in osteoblast differentiation. Introduction: Gli-similar 3 (Glis3) is closely related to members of the Gli subfamily of Krüppel-like zinc finger proteins, transcription factors that act downstream of sonic hedgehog (Shh). In this study, we analyzed the expression of Glis3 in human osteoblasts and mesenchymal stem cells (MSCs). Moreover, we examined the regulatory role of Glis3 in the differentiation of multipotent C3H10T1/2 cells into osteoblasts and adipocytes. Materials and Methods: Microarray analysis was performed to identify genes regulated by Glis3 in multipotent C3H10T1/2 cells. Reporter and electrophoretic mobility shift assays were performed to analyze the regulation of fibroblast growth factor 18 (FGF18) by Glis3. Results: Glis3 promotes osteoblast differentiation in C3H10T1/2 cells as indicated by the induction of alkaline phosphatase activity and increased expression of osteopontin, osteocalcin, and Runx2. In contrast, Glis3 expression inhibits adipocyte differentiation. Glis3 acts synergistically with BMP2 and Shh in inducing osteoblast differentiation. Deletion analysis indicated that the carboxyl-terminal activation function of Glis3 is needed for its stimulation of osteoblast differentiation. Glis3 is highly expressed in human osteoblasts and induced in MSCs during differentiation along the osteoblast lineage. Microarray analysis identified FGF18 as one of the genes induced by Glis3 in C3H10T1/2 cells. Promoter analysis and electrophoretic mobility shift assays indicated that a Glis3 binding site in the FGF18 promoter flanking region is important in its regulation by Glis3. Conclusions: Our study showed that Glis3 positively regulates differentiation of C3H10T1/2 cells into osteoblasts and inhibits adipocyte differentiation. Glis3 acts synergistically with BMP2 and Shh in inducing osteoblast differentiation. The promotion of osteoblast differentiation by Glis3 involves increased expression of FGF18, a positive regulator of osteogenesis. This, in conjunction with the induction of Glis3 expression during osteoblast differentiation in MSCs and its expression in osteoblasts, suggests that Glis3 is an important modulator of MSC differentiation. [source] Human liver stem cell-derived microvesicles accelerate hepatic regeneration in hepatectomized ratsJOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 6b 2010M. B. Herrera Abstract Several studies indicate that adult stem cells may improve the recovery from acute tissue injury. It has been suggested that they may contribute to tissue regeneration by the release of paracrine factors promoting proliferation of tissue resident cells. However, the factors involved remain unknown. In the present study we found that microvesicles (MVs) derived from human liver stem cells (HLSC) induced in vitro proliferation and apoptosis resistance of human and rat hepatocytes. These effects required internalization of MVs in the hepatocytes by an ,4 -integrin-dependent mechanism. However, MVs pre-treated with RNase, even if internalized, were unable to induce hepatocyte proliferation and apoptosis resistance, suggesting an RNA-dependent effect. Microarray analysis and quantitative RT-PCR demonstrated that MVs were shuttling a specific subset of cellular mRNA, such as mRNA associated in the control of transcription, translation, proliferation and apoptosis. When administered in vivo, MVs accelerated the morphological and functional recovery of liver in a model of 70% hepatectomy in rats. This effect was associated with increase in hepatocyte proliferation and was abolished by RNase pre-treatment of MVs. Using human AGO2, as a reporter gene present in MVs, we found the expression of human AGO2 mRNA and protein in the liver of hepatectomized rats treated with MVs. These data suggested a translation of the MV shuttled mRNA into hepatocytes of treated rats. In conclusion, these results suggest that MVs derived from HLSC may activate a proliferative program in remnant hepatocytes after hepatectomy by a horizontal transfer of specific mRNA subsets. [source] Endomyocardial biopsy derived adherent proliferating cells,A potential cell source for cardiac tissue engineeringJOURNAL OF CELLULAR BIOCHEMISTRY, Issue 3 2010Marion Haag Abstract Heart diseases are a leading cause of morbidity and mortality. Cardiac stem cells (CSC) are considered as candidates for cardiac-directed cell therapies. However, clinical translation is hampered since their isolation and expansion is complex. We describe a population of human cardiac derived adherent proliferating (CAP) cells that can be reliably and efficiently isolated and expanded from endomyocardial biopsies (0.1,cm3). Growth kinetics revealed a mean cell doubling time of 49.9,h and a high number of 2.54,×,107 cells in passage 3. Microarray analysis directed at investigating the gene expression profile of human CAP cells demonstrated the absence of the hematopoietic cell markers CD34 and CD45, and of CD90, which is expressed on mesenchymal stem cells (MSC) and fibroblasts. These data were confirmed by flow cytometry analysis. CAP cells could not be differentiated into adipocytes, osteoblasts, chondrocytes, or myoblasts, demonstrating the absence of multilineage potential. Moreover, despite the expression of heart muscle markers like ,-sarcomeric actin and cardiac myosin, CAP cells cannot be differentiated into cardiomyocytes. Regarding functionality, CAP cells were especially positive for many genes involved in angiogenesis like angiopoietin-1, VEGF, KDR, and neuropilins. Globally, principal component and hierarchical clustering analysis and comparison with microarray data from many undifferentiated and differentiated reference cell types, revealed a unique identity of CAP cells. In conclusion, we have identified a unique cardiac tissue derived cell type that can be isolated and expanded from endomyocardial biopsies and which presents a potential cell source for cardiac repair. Results indicate that these cells rather support angiogenesis than cardiomyocyte differentiation. J. Cell. Biochem. 109: 564,575, 2010. © 2009 Wiley-Liss, Inc. [source] Identification of genes regulated by nanog which is involved in ES cells pluripotency and early differentiationJOURNAL OF CELLULAR BIOCHEMISTRY, Issue 6 2008Na Liu Abstract Nanog plays an important role in embryonic stem (ES) cells pluripotency and self-renewal, yet the precise mechanism through which Nanog accomplishes this important function remains unclear. To understand comprehensive molecular mechanism by which Nanog mediates, we identified genome-wide molecular changes upon silencing Nanog in ES cells by using microarray technology. In order to downregulate Nanog expression efficiently, four siRNAs were designed on the basis of the conserved Nanog sequence and their effects on the Nanog expression were tested. Among these four siRNAs, Nanog-siRNA-P1 was found to be most effective. Once Nanog was downregulated, ES cells underwent differentiation by showing morphological change and decreased proliferation rate. Microarray analysis was then used to identify the altered gene expression after Nanog was silenced. A series of differentially expressed genes due to reduced expression of Nanog was identified as Nanog-related genes. These genes identified here could provide insights into the roles of Nanog in ES cells self-renewal and early differentiation. J. Cell. Biochem. 104: 2348,2362, 2008. © 2008 Wiley-Liss, Inc. [source] Microarray analysis of transcription factor gene expression in melatonin-treated human peripheral blood mononuclear cellsJOURNAL OF PINEAL RESEARCH, Issue 4 2006Eunyoung Ha Abstract:, The existence of specific melatonin-binding sites in lymphoid cells led to the discovery of signal transduction pathway for melatonin in human lymphocytes and immunomodulatory role of melatonin in immune cells. In recent years, transcriptional regulation of melatonin on various transcription factors has been demonstrated. Therefore, this study was designed to assess by cDNA microarray analysis the regulatory effects of melatonin on transcription factors in human peripheral blood mononuclear cells (PBMCs). Forty-six genes were upregulated and 23 were downregulated more than twofold in melatonin-treated PBMCs. Of the more than twofold upregulated transcription factor genes, homeo box A4 (HOXA4), forkhead box O1A (FOXO1A), transcription elongation factor B (SIII), polypeptide 3 (TCEB3), and peroxisome proliferative activated receptor delta (PPARD) were identified. Of the more than twofold downregulated genes, PHD finger protein 15 (PHF15) and zinc finger protein 33a (ZNF33A) were identified. In summary, identification of these genes by cDNA microarray analysis in response to melatonin administration may provide a foundation for further studies on the function of melatonin in human PBMCs. [source] Effects of isoflurane, pentobarbital, and urethane on apoptosis and apoptotic signal transduction in rat kidneyACTA ANAESTHESIOLOGICA SCANDINAVICA, Issue 10 2006N. Aravindan Background:, Renal cell apoptosis contributes significantly to the pathogenesis of acute renal failure. Anesthetic agents have been shown to modulate apoptotic signal transduction in various tissues. We examined the effects of 6 h of different general anesthetic techniques on renal cell apoptosis in rat kidneys. Methods:, Twenty-one male Sprague,Dawley rats were randomly allocated into four groups: (i) control, non-anesthetized rats (n= 3) and rats anesthetized with (ii) inhaled isoflurane (n= 6), (iii) intraperitoneal pentobarbital (n= 6), and (iv) intraperitoneal urethane (n= 6). Animals were sacrificed 6 h after the induction of anesthesia. Results:, Apoptosis was assessed by terminal deoxynucleotidyl transferase-fluorescein end-labeling analysis. RNA was extracted from the left kidney to probe cDNA microarrays. Gene expression was measured as a percentage of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and subsequently confirmed using reverse transcriptase-polymerase chain reaction (RT-PCR). Compared with the control (no anesthesia), urethane significantly (P < 0.001) induced apoptosis in both the renal cortex and medulla. Isoflurane significantly (P < 0.001) inhibited apoptosis in the medulla. Microarray analysis revealed that urethane up-regulated more (74) genes than pentobarbital (16) and isoflurane (10). Isoflurane down-regulated more genes (85) than pentobarbital (74) and urethane (12). These anesthetic-induced modulations were significant (P < 0.05) for 60 isoflurane-, 30 pentobarbital- and 4 urethane-modulated genes. Conclusion:, Our results suggest that general anesthetic drugs have an effect on renal cell apoptosis and apoptotic signal transduction, and thus may potentially affect the risk of subsequent acute renal failure. [source] |