Microalgae

Distribution by Scientific Domains
Distribution within Life Sciences

Kinds of Microalgae

  • marine microalgae


  • Selected Abstracts


    A BATCH CULTURE METHOD FOR MICROALGAE AND CYANOBACTERIA WITH CO2 SUPPLY THROUGH POLYETHYLENE MEMBRANES,

    JOURNAL OF PHYCOLOGY, Issue 4 2010
    Yvonne Pörs
    A new method for CO2 supply to photoautotrophic organisms was developed, and its applicability for measuring specific growth rates in shaken batch cultures of cyanobacteria and unicellular algae was shown. Small bags containing a concentrated carbonate buffer with a CO2 partial pressure of 32 mbar were prepared from a thin foil of low density polyethylene (LDPE). These bags were inserted as CO2 reservoirs (CRs) into polystyrene culture flasks with gas-permeable screw caps, which were suitable to photometric growth measurement. CO2 was released directly into the medium with membrane-controlled kinetics. The CRs were not depleted within 1 week, although the atmosphere in the culture vessel exchanged rapidly with the ambient air. Rates of initial growth and final densities of the cultures of six different unicellular algal species and one cyanobacterium were markedly increased by diffusive CO2 supply from the CR. In the presence of a CR, growth was exponential during the first 2 d in all cultures studied. The method described allowed a high number of measurements of specific growth rates with relatively simple experimental setup. [source]


    MICROALGAE AND CYANOBACTERIA: FOOD FOR THOUGHT,

    JOURNAL OF PHYCOLOGY, Issue 2 2008
    Miroslav Gantar
    In non-Western civilizations, cyanobacteria have been part of the human diet for centuries. Today, microalgae and cyanobacteria are either produced in controlled cultivation processes or harvested from the natural habitats and marketed as food supplements around the world. Cyanobacteria produce a vast array of different biologically active compounds, some of which are expected to be used in drug development. The fact that some of the active components from cyanobacteria potentially have anticancer, antimicrobial, antiviral, anti-inflammatory, and other effects is being used for marketing purposes. However, introduction of these products in the form of whole biomass for alimentary purposes raises concerns regarding the potential toxicity and long-term effects on human health. Here, we review data on the use of cyanobacteria and microalgae in human nutrition and searched for available information on legislature that regulates the use of these products. We have found that, although the quality control of these products is most often self-regulated by the manufacturers, different governmental agencies are introducing strict regulations for placing novel products, such as algae and cyanobacteria, on the market. The existing regulations require these products to be tested for the presence of toxins, such as microcystin; however, other, sometimes novel, toxins remain undetected, and their long-term effects on human health remain unknown. [source]


    Stimulatory Effect of Procaine on the Growth of Several Microalgae and Cyanobacteria

    JOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 2 2000
    TAKAHIRO SUZUKI
    Procaine has been used to stimulate plant growth and it has been noted that it also promotes growth of microorganisms. The effect of procaine hydrochloride concentration on the growth rates of several species of microalgae and cyanobacteria was studied under both photoautotropic and heterotrophic growth conditions. Procaine hydrochloride was added to cultures at concentrations over the range 0.01,1000 mg L,1. A stimulating effect of procaine hydrochloride on photoautotrophic growth was observed for the cyanobacteria Anabaena cylindrica and Anabaena variabilis, and for the salt-tolerant green algae Dunaliella primolecta and Dunaliella parva. During active growth in batch culture an increase in growth rate (compared with control culture without procaine hydrochloride) of about 25% was observed at 0.1 mg L,1 of procaine hydrochloride for A. cylindrica. However, procaine hydrochloride was toxic at concentrations of > 10 mg L,1. Simultaneous administration of hydrolysis products of procaine, p -amino-benzoic acid and diethyl aminoethanol, in lieu of procaine hydrochloride, was as effective as procaine in stimulating growth of A. cylindrica. Heterotrophic growth of Chlorella ellipsoidea and Prototheca zopfii was not stimulated by procaine hydrochloride over the concentration range studied (0.1,10 mg L,1). The combined effects of procaine hydrochloride concentration and four other environmental factors (temperature, light intensity, CO2 concentration in the flushing gas and NaCl concentration) on growth rate of D. primolecta was modelled using both a neural network approach and a response surface method. These results indicate that procaine hydrochloride exerts different effects on the growth of microalgal and cyanobacterial cells as functions of dosage, species and culture conditions. [source]


    162 Interactions Between Planktonic Microalgae and Protozoan Grazers

    JOURNAL OF PHYCOLOGY, Issue 2003
    U. Tillmann
    For an algal bloom to develop, the growth rate of the bloom-forming species must exceed the sum of all loss processes. Among these loss processes, grazing is generally believed to be one of the more important factors. Based on numerous field studies it is now recognised that microzooplankton are dominant consumers of phytoplankton in both open ocean and coastal waters. Heterotrophic protists, a major component of microzooplankton communities, constitute a vast complex of diverse feeding strategies and behaviour which allow them access to even the larger phytoplankton species. A number of laboratory studies have shown the capability of different protistan species to feed and grow on bloom forming algal species. Because of short generation times, their ability for fast reaction to short-term variation in food conditions enables phagotrophic protists to fulfil the function of a heterotrophic buffer, which might balances the flow of matter in case of phytoplankton blooms. The importance of grazing as control of microalgae becomes most apparent by its failure; if community grazing controls initial stages of bloom development, there simply is no bloom. However, if a certain algal species is difficult to graze, e.g. due to specific defence mechanisms, a reduced grazing pressure will certainly favour bloom development. The present contribution will provide a general overview on the interactions between planktonic microalgae and protozoan grazers with special emphasis on species-specific interactions and algal defence strategies against protozoan grazers. [source]


    Incorporation of Chlorella vulgaris and Spirulina maxima biomass in pasta products.

    JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, Issue 10 2010
    Part 1: Preparation, evaluation
    Abstract BACKGROUND: Microalgae are able to enhance the nutritional content of conventional foods and hence to positively affect human health, due to their original chemical composition. The aim of the present study was to prepare fresh spaghetti enriched with different amounts of microalgae biomass (Chlorella vulgaris and Spirulina maxima) and to compare the quality parameters (optimal cooking time, cooking losses, swelling index and water absorption), chemical composition, instrumental texture and colour of the raw and cooked pasta enriched with microalgae biomass with standard semolina spaghetti. RESULTS: The incorporation of microalgae results in an increase of quality parameters when compared to the control sample. The colour of microalgae pastas remained relatively stable after cooking. The addition of microalgae resulted in an increase in the raw pasta firmness when compared to the control sample. Of all the microalgae studied, an increase in the biomass concentration (0.5,2.0%) resulted in a general tendency of an increase in the pasta firmness. Sensory analysis revealed that microalgae pastas had higher acceptance scores by the panellists than the control pasta. CONCLUSION: Microalgae pastas presented very appellative colours, such as orange and green, similar to pastas produced with vegetables, with nutritional advantages, showing energetic values similar to commercial pastas. The use of microalgae biomass can enhance the nutritional and sensorial quality of pasta, without affecting its cooking and textural properties. Copyright © 2010 Society of Chemical Industry [source]


    Use of Artificial Zeolites to Reduce Copper Toxicity to Two Marine Microalgae

    JOURNAL OF THE WORLD AQUACULTURE SOCIETY, Issue 2 2002
    Herlinda Gómez Villa
    [source]


    Nutritional value of Pavlova spp. (Prymnesiophyceae) for spat of the Cortez oyster Crassostrea corteziensis during late-nursery culturing at the hatchery

    AQUACULTURE RESEARCH, Issue 1 2008
    Josafat J Ojeda-Ramírez
    Abstract Three Pavlova species were evaluated for their nutritional value as diets for growth and survival of the Cortez oyster Crassostrea corteziensis spat during late-nursery cultivation at a hatchery. Microalgae were provided as monospecific diets (Pavlova salina, P. sp. C50 and P. sp. C53) and in binary combinations of diets 1+2, 1+3 and 2+3 at 80,90 × 103 cells mL,1 for 21 days. Juveniles experienced high survival rates and grew well with all dietary treatments, but binary diets yielded greater survival and growth of spat. From the three binary treatments, Diet 6 (P. sp. C50 and P. sp. C53) promoted significantly (P<0.001) fastest growth of juveniles in shell height (0.19 mm day,1), shell length (0.14 mm day,1), total wet weight (0.04 g day,1) and dry weight of meat biomass (0.024 g day,1). For all shell dimensions, the lowest growth rates occurred with Diets 2 (P. sp. C56 alone) and 3 (P. sp. C50 alone). These results highlight the importance of testing microalgal diets for bivalve spat rather than just relying on published nutritional values. [source]


    Microalgae for the production of bulk chemicals and biofuels

    BIOFUELS, BIOPRODUCTS AND BIOREFINING, Issue 3 2010
    Rene H Wijffels
    Abstract The feasibility of microalgae production for biodiesel was discussed. Although algae are not yet produced at large scale for bulk applications, there are opportunities to develop this process in a sustainable way. It remains unlikely, however, that the process will be developed for biodiesel as the only end product from microalgae. In order to develop a more sustainable and economically feasible process, all biomass components (e.g. proteins, lipids, carbohydrates) should be used and therefore biorefining of microalgae is very important for the selective separation and use of the functional biomass components. If biorefining of microalgae is applied, lipids should be fractionated into lipids for biodiesel, lipids as a feedstock for the chemical industry and ,-3 fatty acids, proteins and carbohydrates for food, feed and bulk chemicals, and the oxygen produced should be recovered also. If, in addition, production of algae is done on residual nutrient feedstocks and CO2, and production of microalgae is done on a large scale against low production costs, production of bulk chemicals and fuels from microalgae will become economically feasible. In order to obtain that, a number of bottlenecks need to be removed and a multidisciplinary approach in which systems biology, metabolic modeling, strain development, photobioreactor design and operation, scale-up, biorefining, integrated production chain, and the whole system design (including logistics) should be addressed. Copyright © 2010 Society of Chemical Industry and John Wiley & Sons, Ltd [source]


    Microalgae in a closed-loop energy system

    BIOTECHNOLOGY & BIOENGINEERING, Issue 2 2009
    Article first published online: 21 APR 200
    No abstract is available for this article. [source]


    Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor

    BIOTECHNOLOGY & BIOENGINEERING, Issue 1 2009
    Liliana Rodolfi
    Abstract Thirty microalgal strains were screened in the laboratory for their biomass productivity and lipid content. Four strains (two marine and two freshwater), selected because robust, highly productive and with a relatively high lipid content, were cultivated under nitrogen deprivation in 0.6-L bubbled tubes. Only the two marine microalgae accumulated lipid under such conditions. One of them, the eustigmatophyte Nannochloropsis sp. F&M-M24, which attained 60% lipid content after nitrogen starvation, was grown in a 20-L Flat Alveolar Panel photobioreactor to study the influence of irradiance and nutrient (nitrogen or phosphorus) deprivation on fatty acid accumulation. Fatty acid content increased with high irradiances (up to 32.5% of dry biomass) and following both nitrogen and phosphorus deprivation (up to about 50%). To evaluate its lipid production potential under natural sunlight, the strain was grown outdoors in 110-L Green Wall Panel photobioreactors under nutrient sufficient and deficient conditions. Lipid productivity increased from 117 mg/L/day in nutrient sufficient media (with an average biomass productivity of 0.36 g/L/day and 32% lipid content) to 204 mg/L/day (with an average biomass productivity of 0.30 g/L/day and more than 60% final lipid content) in nitrogen deprived media. In a two-phase cultivation process (a nutrient sufficient phase to produce the inoculum followed by a nitrogen deprived phase to boost lipid synthesis) the oil production potential could be projected to be more than 90 kg per hectare per day. This is the first report of an increase of both lipid content and areal lipid productivity attained through nutrient deprivation in an outdoor algal culture. The experiments showed that this marine eustigmatophyte has the potential for an annual production of 20 tons of lipid per hectare in the Mediterranean climate and of more than 30 tons of lipid per hectare in sunny tropical areas. Biotechnol. Bioeng. 2009;102: 100,112. © 2008 Wiley Periodicals, Inc. [source]


    Basin geochemistry and isotopic ratios of fishes and basal production sources in four neotropical rivers

    ECOLOGY OF FRESHWATER FISH, Issue 3 2007
    David B. Jepsen
    Abstract,,, We analysed stable carbon and nitrogen isotopic ratios of dissolved inorganic carbon (DIC), plants, detritus and fishes to estimate the relative importance of dominant production sources supporting food webs of four Venezuelan rivers with divergent geochemical and watershed characteristics. Based on samples taken during the dry season at each site, fishes from two nutrient-poor, blackwater rivers had significantly lower ,13C values (mean = ,31.4, and ,32.9,) than fishes from more productive clearwater and whitewater rivers (mean = ,25.2, and ,25.6, respectively). Low carbon isotopic ratios of fishes from blackwaters were likely influenced by low ,13C of DIC assimilated by aquatic primary producers. Although floodplains of three savanna rivers supported high biomass of C4 grasses, relatively little carbon from this source appeared to be assimilated by fishes. Most fishes in each system assimilated carbon derived mostly from a combination of microalgae and C3 macrophytes, two sources with broadly overlapping carbon isotopic signatures. Even with this broad overlap, several benthivorous grazers from blackwater and whitewater rivers had isotopic values that aligned more closely with algae. We conclude that comparative stable isotopic studies of river biota need to account for watershed geochemistry that influences the isotopic composition of basal production sources. Moreover, isotopic differences between river basins can provide a basis for discriminating spatial and temporal variation in the trophic ecology of fishes that migrate between watersheds having distinct geochemical characteristics. [source]


    Testing for endemism, genotypic diversity and species concepts in Antarctic terrestrial microalgae of the Tribonemataceae (Stramenopiles, Xanthophyceae)

    ENVIRONMENTAL MICROBIOLOGY, Issue 3 2009
    Nataliya Rybalka
    Summary The genetic diversity of all available culture strains of the Tribonemataceae (Stramenopiles, Xanthophyceae) from Antarctica was assessed using the chloroplast-encoded psbA /rbcL spacer region sequences, a highly variable molecular marker, to test for endemism when compared with their closest temperate relatives. There was no species endemic for Antarctica, and no phylogenetic clade corresponded to a limited geographical region. However, species of the Tribonemataceae may have Antarctic populations that are distinct from those of other regions because the Antarctic strain spacer sequences were not identical to sequences from temperate regions. Spacer sequences from five new Antarctic isolates were identical to one or more previously available Antarctic strains, indicating that the Tribonemataceae diversity in Antarctic may be rather limited. Direct comparisons of the spacer sequences and phylogenetic analyses of the more conserved rbcL gene revealed that current morphospecies were inadequate to describe the actual biodiversity of the group. For example, the genus Xanthonema, as currently circumscribed, was paraphyletic. Fortunately, the presence of distinctive sequence regions within the psbA/rbcL spacer, together with differences in the rbcL phylogeny, provided significant autoapomorphic criteria to re-define the Tribonemataceae species. [source]


    Application of Toxkit microbiotests for toxicity assessment in soil and compost

    ENVIRONMENTAL TOXICOLOGY, Issue 4 2004
    L. Dubova
    Abstract The potential of Toxkit microbiotests to detect and analyze pollution in agricultural soil and the quality of compost was studied. The toxicity tests used included seed germination biotests using cress salad (Lepidum sativum L.), tomato (Lycopersicum esculentum L.), and cucumber (Cucumis sativus L.), and the Toxkit microbiotests included those with microalgae (Selenastrum capricornutum), protozoa (Tetrahymena thermophila), crustaceans (Daphnia magna, Thamnocephalus platyurus, and Heterocypris incongruens), and rotifers (Brachionus calyciflorus). Experiments on compost were undertaken in a modified solid-state fermentation system (SSF) and under field conditions (in a windrow). To promote the composting process, two strains of Trichoderma (Trichoderma lignorum and Trichoderma viride), as well as a nitrification association that regulated the nitrogen-ammonification and nitrification processes were applied. © 2004 Wiley Periodicals, Inc. Environ Toxicol 19: 274,279, 2004. [source]


    Toxicity of brominated volatile organics to freshwater biota

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 9 2010
    Monique T. Binet
    Abstract As part of a larger study investigating the fate and effects of brominated volatile organic compounds (VOCs) in contaminated groundwaters discharging to surface waters, the toxicity of 1,2 dibromoethene (DBE) and 1,1,2-tribromoethene (TriBE) to freshwater aquatic biota was investigated. Their toxicity to bacteria (Microtox®), microalgae (Chlorella sp.), cladocerans (Ceriodaphnia dubia), duckweed (Lemna sp.) and midges (Chironomus tepperi) was determined after careful optimization of the test conditions to minimize chemical losses throughout the tests. In addition, concentrations of DBE and TriBE were carefully monitored throughout the bioassays to ensure accurate calculation of toxicity values. 1,2-Dibromoethene showed low toxicity to most species, with concentrations to cause 50% lethality or effect (LC/EC50 values) ranging from 28 to 420,mg/L, 10% lethality or effect (LC/EC10 values) ranging from 18 to 94,mg/L and no-observed-effect concentrations (NOECs) ranging from 22 to 82,mg/L. 1,1,2-Tribromoethene was more toxic than DBE, with LC/EC50 values of 2.4 to 18,mg/L, LC/EC10 values of 0.94 to 11,mg/L and NOECs of 0.29 to 13,mg/L. Using these limited data, together with data from the only other published study on TriBE, moderate-reliability water quality guidelines (WQGs) were estimated from species sensitivity distributions. The proposed guideline trigger values for 95% species protection with 50% confidence were 2,mg/L for DBE and 0.03,mg/L for TriBE. The maximum concentrations of DBE and TriBE in nearby surface waters (3 and 1,µg /L, respectively) were well below these WQGs, so the risk to the freshwater environment receiving contaminated groundwater inflows was considered to be low, with hazard quotients <1 for both VOCs. Environ. Toxicol. Chem. 2010;29:1984,1993. © 2010 SETAC [source]


    Discrimination of cyanobacterial strains isolated from saline soils in Nakhon Ratchasima, Thailand using attenuated total reflectance FTIR spectroscopy

    JOURNAL OF BIOPHOTONICS, Issue 8-9 2010
    Somchanh Bounphanmy
    Abstract A method was developed whereby high quality FTIR spectra could be rapidly acquired from soil-borne filamentous cyanobacteria using ATR FTIR spectroscopy. Spectra of all strains displayed bands typical of those previously reported for microalgae and water-borne cyanobacteria, with each strain having a unique spectral profile. Most variation between strains occurred in the C,O stretching and the amide regions. Soft Independent Modelling by Class Analogy (SIMCA) was used to classify the strains with an accuracy of better than 93%, with best classification results using the spectral region from 1800,950 cm,1. Despite this spectral region undergoing substantial changes, particularly in amide and C,O stretching bands, as cultures progressed through the early-, mid- to late-exponential growth phases, classification accuracy was still good (,80%) with data from all growth phases combined. These results indicate that ATR/FTIR spectroscopy combined with chemometric classification methods constitute a rapid, reproducible, and potentially automated approach to classifying soil-borne filamentous cyanobacteria. (© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


    Bioprocesses for the removal of nitrogen oxides from polluted air

    JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 5 2005
    Yaomin Jin
    Abstract Nitrogen oxides (NOx) of environmental concern are nitrogen monoxide (NO) and nitrogen dioxide (NO2). They are hazardous air pollutants that lead to the formation of acid rain and tropospheric ozone. Both pollutants are usually present simultaneously and are, therefore, called NOx. Another compound is N2O which is found in the stratosphere where it plays a role in the greenhouse effect. Concern for environmental and health issues coupled with stringent NOx emission standards generates a need for the development of efficient low-cost NOx abatement technologies. Under such circumstances, it becomes mandatory for each NOx-emitting industry or facility to opt for proper NOx control measures. Several techniques are available to control NOx emissions: selective catalytic reduction (SCR), selective non-catalytic reduction (SNCR), adsorption, scrubbing, and biological methods. Each process offers specific advantages and limitations. Since bioprocesses present many advantages over conventional technologies for flue gas cleaning, a lot of interest has recently been shown for these processes. This article reviews the major characteristics of conventional non-biological technologies and recent advances in the biological removal of NOx from flue gases based on the catalytic activity of either eucaryotes or procaryotes, ie nitrification, denitrification, the use of microalgae, and a combined physicochemical and biological process (BioDeNOx). Relatively uncomplicated design and simple operation and maintenance requirements make biological removal a good option for the control of NOx emissions in stationary sources. Copyright © 2005 Society of Chemical Industry [source]


    Proteomic Alterations of Antarctic Ice Microalga Chlamydomonas sp.

    JOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 8 2006
    Under Low-Temperature Stress
    Abstract Antarctic ice microalga can survive and thrive in cold channels or pores in the Antarctic ice layer. In order to understand the adaptive mechanisms to low temperature, in the present study we compared two-dimensional polyacrylamide gel electrophoresis (2-DE) profiles of normal and low temperature-stressed Antarctic ice microalga Chlamydomonas sp. cells. In addition, new protein spots induced by low temperature were identified with peptide mass fingerprinting based on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and database searching. Well-resolved and reproducible 2-DE patterns of both normal and low temperature-stressed cells were acquired. A total of 626 spots was detected in control cells and 652 spots were detected in the corresponding low temperature-stressed cells. A total of 598 spots was matched between normal and stressed cells. Two newly synthesized proteins (a and b) in low temperature-stressed cells were characterized. Protein spot A (53 kDa, pI 6.0) was similar to isopropylmalate/homocitrate/citramalate synthases, which act in the transport and metabolism of amino acids. Protein spot b (25 kDa, pI 8.0) was related to glutathione S -transferase, which functions as a scavenger of active oxygen, free radicals, and noxious metabolites. The present study is valuable for the application of ice microalgae, establishing an ice microalga Chlamydomonas sp. proteome database, and screening molecular biomarkers for further studies. (Managing editor: Li-Hui Zhao) [source]


    Stimulatory Effect of Procaine on the Growth of Several Microalgae and Cyanobacteria

    JOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 2 2000
    TAKAHIRO SUZUKI
    Procaine has been used to stimulate plant growth and it has been noted that it also promotes growth of microorganisms. The effect of procaine hydrochloride concentration on the growth rates of several species of microalgae and cyanobacteria was studied under both photoautotropic and heterotrophic growth conditions. Procaine hydrochloride was added to cultures at concentrations over the range 0.01,1000 mg L,1. A stimulating effect of procaine hydrochloride on photoautotrophic growth was observed for the cyanobacteria Anabaena cylindrica and Anabaena variabilis, and for the salt-tolerant green algae Dunaliella primolecta and Dunaliella parva. During active growth in batch culture an increase in growth rate (compared with control culture without procaine hydrochloride) of about 25% was observed at 0.1 mg L,1 of procaine hydrochloride for A. cylindrica. However, procaine hydrochloride was toxic at concentrations of > 10 mg L,1. Simultaneous administration of hydrolysis products of procaine, p -amino-benzoic acid and diethyl aminoethanol, in lieu of procaine hydrochloride, was as effective as procaine in stimulating growth of A. cylindrica. Heterotrophic growth of Chlorella ellipsoidea and Prototheca zopfii was not stimulated by procaine hydrochloride over the concentration range studied (0.1,10 mg L,1). The combined effects of procaine hydrochloride concentration and four other environmental factors (temperature, light intensity, CO2 concentration in the flushing gas and NaCl concentration) on growth rate of D. primolecta was modelled using both a neural network approach and a response surface method. These results indicate that procaine hydrochloride exerts different effects on the growth of microalgal and cyanobacterial cells as functions of dosage, species and culture conditions. [source]


    POLYSACCHARIDE RELEASE BY APHANOTHECE HALOPHYTICA INHIBITS CYANOBACTERIA/CLAY FLOCCULATION,

    JOURNAL OF PHYCOLOGY, Issue 3 2010
    Li Chen
    Many microalgae release polysaccharides, but the effects of the polysaccharides on mutual flocculation of microalgae and clay in aquatic environments have not been well studied. Aphanothece halophytica Frémy is a bloom-forming cyanobacterium in salterns and can release large amounts of polysaccharide (AH-RPS). In the present study, we investigated the effect of AH-RPS on mutual flocculation of cyanobacterium and clay and further explored the mechanisms by which AH-RPS affected mutual flocculation. We determined that AH-RPS possessed clay-dispersing activity as defined as the ability to inhibit the flocculation and sedimentation of clay suspensions in water. Supplementation of AH-RPS in cyanobacterial cell suspensions and in the culture media containing the same kaolin clay concentration dose dependently decreased flocculation of cyanobacterial cells and increased clay-dispersing activity. These findings indicate that the clay-dispersing activity of AH-RPS was related to its inhibitory effect on mutual flocculation of cyanobacterial cells and clay particles. Moreover, the clay-dispersing activity of AH-RPS was stable from pH 3 to pH 10 and was increased by adding NaCl, MgCl2, CaCl2, or low concentrations of KCl (up to 0.4 M). Taken together, our data suggest that AH-RPS might maintain its clay-dispersing activity and inhibit mutual flocculation of microalgae and suspended clay in saltern brine. [source]


    NITZSCHIA OVALIS (BACILLARIOPHYCEAE) MONO LAKE STRAIN ACCUMULATES 1,4/2,5 CYCLOHEXANETETROL IN RESPONSE TO INCREASED SALINITY,

    JOURNAL OF PHYCOLOGY, Issue 2 2009
    Fernando Garza-Sánchez
    The growth of microalgae in hypersaline conditions requires that cells accumulate osmoprotectants. In many instances, these are polyols. We isolated the diatom Nitzschia ovalis H. J. Arn. from the saline and alkaline water body Mono Lake (CA, USA). This isolate can grow in salinities ranging from 5 to 120 parts per thousand (ppt) of salt but normally at 90 ppt salinity. In this report, we identified the major polyol osmoprotectant as 1,4/2,5 cyclohexanetetrol by electron ionization-mass spectrometry (EI,MS), 1H, 13C nuclear magnetic resonance spectroscopy (NMR), and infrared (IR) and showed an increase in cellular concentration in response to rising salinity. This increase in the cyclitol concentration was evaluated by gas chromatography of the derived tetraacetylated cyclohexanetetrol obtaining an average of 0.7 fmol · cell,1 at 5 ppt and rising to 22.5 fmol · cell,1 at 120 ppt. The 1,4/2,5 cyclohexanetetrol was also detected in the red alga Porphyridium purpureum. Analysis of the free amino acid content in N. ovalis cultures exposed to changes in salinity showed that proline and lysine also accumulate with increased salinity, but the cellular concentration of these amino acids is about 10-fold lower than the concentration of 1,4/2,5 cyclohexanetetrol. The comparison of amino acid concentration per cell with cyclitol suggests that this polyol is important in compensating the cellular osmotic pressure due to increased salinity, but other physiological functions could also be considered. [source]


    MICROALGAE AND CYANOBACTERIA: FOOD FOR THOUGHT,

    JOURNAL OF PHYCOLOGY, Issue 2 2008
    Miroslav Gantar
    In non-Western civilizations, cyanobacteria have been part of the human diet for centuries. Today, microalgae and cyanobacteria are either produced in controlled cultivation processes or harvested from the natural habitats and marketed as food supplements around the world. Cyanobacteria produce a vast array of different biologically active compounds, some of which are expected to be used in drug development. The fact that some of the active components from cyanobacteria potentially have anticancer, antimicrobial, antiviral, anti-inflammatory, and other effects is being used for marketing purposes. However, introduction of these products in the form of whole biomass for alimentary purposes raises concerns regarding the potential toxicity and long-term effects on human health. Here, we review data on the use of cyanobacteria and microalgae in human nutrition and searched for available information on legislature that regulates the use of these products. We have found that, although the quality control of these products is most often self-regulated by the manufacturers, different governmental agencies are introducing strict regulations for placing novel products, such as algae and cyanobacteria, on the market. The existing regulations require these products to be tested for the presence of toxins, such as microcystin; however, other, sometimes novel, toxins remain undetected, and their long-term effects on human health remain unknown. [source]


    Melting out of sea ice causes greater photosynthetic stress in algae than freezing in,

    JOURNAL OF PHYCOLOGY, Issue 5 2007
    Peter J. Ralph
    Sea ice is the dominant feature of polar oceans and contains significant quantities of microalgae. When sea ice forms and melts, the microalgal cells within the ice matrix are exposed to altered salinity and irradiance conditions, and subsequently, their photosynthetic apparatuses become stressed. To simulate the effect of ice formation and melting, samples of sea-ice algae from Cape Hallett (Antarctica) were exposed to altered salinity conditions and incubated under different levels of irradiance. The physiological condition of their photosynthetic apparatuses was monitored using fast and slow fluorescence-induction kinetics. Sea-ice algae exhibited the least photosynthetic stress when maintained in 35, and 51, salinity, whereas 16, 21, and 65, treatments resulted in significant photosynthetic stress. The greatest photosynthetic impact appeared on PSII, resulting in substantial closure of PSII reaction centers when exposed to extreme salinity treatments. Salinity stress to sea-ice algae was light dependent, such that incubated samples only suffered photosynthetic damage when irradiance was applied. Analysis of fast-induction curves showed reductions in J, I, and P transients (or steps) associated with combined salinity and irradiance stress. This stress manifests itself in the limited capacity for the reduction of the primary electron receptor, QA, and the plastoquinone pool, which ultimately inhibited effective quantum yield of PSII and electron transport rate. These results suggest that sea-ice algae undergo greater photosynthetic stress during the process of melting into the hyposaline meltwater lens at the ice edge during summer than do microalgae cells during their incorporation into the ice matrix during the process of freezing. [source]


    PSEUDULVELLA AMERICANA BELONGS TO THE ORDER CHAETOPELTIDALES (CLASS CHLOROPHYCEAE), EVIDENCE FROM ULTRASTRUCTURE AND SSU RDNA SEQUENCE DATA,

    JOURNAL OF PHYCOLOGY, Issue 4 2006
    M. Virginia Sanchez-Puerta
    The genus Pseudulvella Wille 1909 includes epiphytic, freshwater, or marine disk-shaped green microalgae that form quadriflagellate zoospores. No ultrastructural or molecular studies have been conducted on the genus, and its evolutionary relationships remain unclear. The purpose of the present study is to describe the life history, ultrastructural features, and phylogenetic affiliations of Pseudulvella americana (Snow) Wille, the type species of the genus. Thalli of this microalga were prostrate and composed of radiating branched filaments that coalesced to form a disk. Vegetative cells had a pyrenoid encircled by starch plates and traversed by one or two convoluted cytoplasmic channels. They had well-defined cell walls without plasmodesmata. Asexual reproduction was by means of tetraflagellate zoospores formed in numbers of two to eight from central cells of the thallus. The flagellar apparatus of zoospores was cruciate, with four basal bodies and four microtubular roots. The paired basal bodies lay directly opposite (DO) one another. The microtubular root system had a 5-2-5-2 alternation pattern, where the "s" roots contained five microtubules in a four-over-one configuration. A tetralobate nonstriated distal fiber connected all four basal bodies. A wedge-shaped proximal sheath subtended each of the basal bodies. The ultrastructural features of the zoospores were those of members of the order Chaetopeltidales. Phylogenetic analyses based on SSU rDNA placed P. americana sister to Chaetopeltis orbicularis in a well-supported Chaetopeltidales clade. Such a combination of features confirmed that this alga is a member of the order Chaetopeltidales. [source]


    CHARACTERIZING AND QUANTIFYING PHOTOINHIBITION IN INTERTIDAL MICROPHYTOBENTHOS,

    JOURNAL OF PHYCOLOGY, Issue 4 2004
    Gérard F. Blanchard
    This study characterizes the short-term influence of the sustained saturating irradiance encountered by the microphytobenthos inhabiting intertidal mudflats. The kinetics of photoinhibition in epipelic microalgae from intertidal mudflats were investigated in the laboratory. Previously isolated benthic microalgae were exposed to a saturating photon flux density (PFD) for periods ranging from 0 to 180 min; every 30 min, a photosynthesis-irradiance curve was established to quantify the effect of the saturating PFD on both parameters ,B, the photosynthetic efficiency, and PmB, the photosynthetic capacity. The ,B decreased from the beginning of light exposure until the end, whereas PmB first slightly increased and then diminished from 90 min exposure onward. It turned out that epipelic microphytobenthos undergoes photoinhibition after about 90 min of saturating PFD. The possible ecological consequences of these ecophysiological results are discussed. [source]


    163 Identification of Euglenoids That Produce Ichthyotoxin(S) (Euglenophyta)

    JOURNAL OF PHYCOLOGY, Issue 2003
    R. E. Triemer
    Diatoms, dinoflagellates, pelagiophytes, prymnesiophytes, and cyanobacteria are the only divisions of microalgae known to produce toxins. We now report toxin production by freshwater members of the genus Euglena. Fish mortalities (sheepshead minnows, catfish, striped bass, and tilapia) have been observed following exposure in the field to Euglena blooms and in the laboratory when exposed to unialgal isolates of two species of Euglena (E. sanguinea Ehrenberg and E. granulata (Klebs) Lemm.). Three toxic fractions have been isolated from unialgal isolates of both species, and include both water soluble and lipophilic compounds having ichthyotoxic activity. The toxins are stable at ,80°C for at least 60 days and are heat stable to 30°C. Erratic swimming behavior of fish suggests a neurological toxin. This is the first report of fish kills by any freshwater algal taxa from both field and laboratory studies. [source]


    162 Interactions Between Planktonic Microalgae and Protozoan Grazers

    JOURNAL OF PHYCOLOGY, Issue 2003
    U. Tillmann
    For an algal bloom to develop, the growth rate of the bloom-forming species must exceed the sum of all loss processes. Among these loss processes, grazing is generally believed to be one of the more important factors. Based on numerous field studies it is now recognised that microzooplankton are dominant consumers of phytoplankton in both open ocean and coastal waters. Heterotrophic protists, a major component of microzooplankton communities, constitute a vast complex of diverse feeding strategies and behaviour which allow them access to even the larger phytoplankton species. A number of laboratory studies have shown the capability of different protistan species to feed and grow on bloom forming algal species. Because of short generation times, their ability for fast reaction to short-term variation in food conditions enables phagotrophic protists to fulfil the function of a heterotrophic buffer, which might balances the flow of matter in case of phytoplankton blooms. The importance of grazing as control of microalgae becomes most apparent by its failure; if community grazing controls initial stages of bloom development, there simply is no bloom. However, if a certain algal species is difficult to graze, e.g. due to specific defence mechanisms, a reduced grazing pressure will certainly favour bloom development. The present contribution will provide a general overview on the interactions between planktonic microalgae and protozoan grazers with special emphasis on species-specific interactions and algal defence strategies against protozoan grazers. [source]


    STEROLS AS BIOMARKERS IN GYMNODINIUM BREVE: DISTRIBUTION IN DINOFLAGELLATES

    JOURNAL OF PHYCOLOGY, Issue 2000
    J.D. Leblond
    The sterol composition of marine microalgae has been shown to be a chemotaxonomic property potentially of value in distinguishing members of different algal classes. For example, members of the class Dinophyceae display sterol compositions ranging from as few as two (cholesterol and dinosterol in Alexandrium tamarense) to as many as twelve in certain Heterocapsa species. Certain of these are 4-methyl sterols rarely found in other classes of algae. The ability to use sterol biomarkers to distinguish certain dinoflagellates such as the toxic species Gymnodinium breve, responsible for red tide events in the Gulf of Mexico, from other species within the same class would be of considerable scientific and economic value. Gymnodinium breve has been shown by others to possess two principal novel sterols, (24S)-4a-methylergosta-8(14), 22-dien-3b-ol (ED) and its 27-nor derivative (NED), not previously known to be present in other dinoflagellates. Characterization of free and esterified sterols from laboratory cultures of G. breve and of samples from a recent bloom in the Gulf of Mexico has confirmed the predominance of these two sterols. This has prompted a study of the sterol signatures of more than 30 dinoflagellates. ED and NED were shown also to be the primary sterols of the closely related dinoflagellates G. mikimotoi and G. galatheanum. They are also found as minor components of the more complex sterol profiles of other members of the Gymnodinium-Peridinium-Prorocentrum (GPP) taxonomic group. The more widespread distribution of this sterol pattern is consistent with the known close relationship between G. breve and G. mikimotoi. [source]


    Incorporation of Chlorella vulgaris and Spirulina maxima biomass in pasta products.

    JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, Issue 10 2010
    Part 1: Preparation, evaluation
    Abstract BACKGROUND: Microalgae are able to enhance the nutritional content of conventional foods and hence to positively affect human health, due to their original chemical composition. The aim of the present study was to prepare fresh spaghetti enriched with different amounts of microalgae biomass (Chlorella vulgaris and Spirulina maxima) and to compare the quality parameters (optimal cooking time, cooking losses, swelling index and water absorption), chemical composition, instrumental texture and colour of the raw and cooked pasta enriched with microalgae biomass with standard semolina spaghetti. RESULTS: The incorporation of microalgae results in an increase of quality parameters when compared to the control sample. The colour of microalgae pastas remained relatively stable after cooking. The addition of microalgae resulted in an increase in the raw pasta firmness when compared to the control sample. Of all the microalgae studied, an increase in the biomass concentration (0.5,2.0%) resulted in a general tendency of an increase in the pasta firmness. Sensory analysis revealed that microalgae pastas had higher acceptance scores by the panellists than the control pasta. CONCLUSION: Microalgae pastas presented very appellative colours, such as orange and green, similar to pastas produced with vegetables, with nutritional advantages, showing energetic values similar to commercial pastas. The use of microalgae biomass can enhance the nutritional and sensorial quality of pasta, without affecting its cooking and textural properties. Copyright © 2010 Society of Chemical Industry [source]


    Size Economies of a Pacific Threadfin Polydactylus sexfilis Hatchery in Hawaii

    JOURNAL OF THE WORLD AQUACULTURE SOCIETY, Issue 4 2002
    Lotus E. Kam
    A spreadsheet model has been developed to determine the viable scale for a commercial Pacific threadfin Polydactylus sexfilis hatchery in Hawaii. The production scheme is modeled after current practices performed at the Oceanic Institute in Waimanalo, Hawaii. For a hatchery enterprise producing 1.2 million fry per year, the cost associated with raising one 40-d-old 1.00-g fry is estimated at 22.01ø. The largest variable costs are in labor and supplies, which comprise 49% and 9% of the total production cost. The combined annualized fixed cost for development and equipment is approximately 12% of total production cost. At a sale price of 25ø per fry, the 20-yr internal rate of return (IRR) is 30.63%. In comparison to the 22.01ø unit cost for 1.2 million fry production, analyses of smaller enterprises producing 900,000 and 600,000 fry per year reflected significant size diseconomies with unit costs of 27.41ø and 38.82ø, respectively. Demand to support a large scale Pacific threadfin commercial hatchery is uncertain. Since smaller scale commercial hatcheries may not be economically feasible, facilities may seek to outsource live feed production modules or pursue multiproduct and multiphase approaches to production. An analysis of the production period length, for example, indicates that the cost for producing a day-25 0.05-g fry is 17.25ø before tax and suggests the financial implications of transferring the responsibility of the nursery stage to grow-out farmers. Evaluation of the benefits gained from changes in nursery length, however, must also consider changes in facility requirements, mortality, and shipping costs associated with transit, and the growout performance of and market demand for different size fry. Sensitivity analyses also indicate the potential cost savings associated with the elimination of rotifer, microalgae, and enriched artemia production. Managerial decisions, however, must also consider the quality and associated production efficiencies of substitutes. [source]


    Wall ultrastructure of an Ediacaran acritarch from the Officer Basin, Australia

    LETHAIA, Issue 2 2007
    SEBASTIAN WILLMAN
    Well-preserved organic-walled microfossils referred to as acritarchs occur abundantly in Ediacaran deposits in the Officer Basin in Australia. The assemblages are taxonomically diverse, change over short stratigraphical intervals and are largely facies independent across marine basins. Affinities of this informal group of fossils to modern biota are poorly recognized or unknown, with the exception of only a few taxa. Morphological studies by use of transmitted light microscopy, geochemical analyses and other lines of evidence, suggest that some Precambrian acritarchs are related to algae (including prasinophytes, chlorophytes, and perhaps also dinoflagellates). Limitations in magnification and resolution using transmitted light microscopy may be relevant when assessing relationships to modern taxa. Scanning electron microscopy reveals details of morphology, microstructure and wall surface microelements, whereas transmission electron microscopy provides high-resolution images of the cell wall ultrastructure. In the light of previous ultrastructural studies it can be concluded that the division of acritarchs into leiospheres (unornamented) and acanthomorphs (ornamented) is entirely artificial and has no phylogenetic meaning. Examination of Gyalosphaeridium pulchrum using transmission electron microscopy reveals a vesicle wall with four distinct layers. This multilayered wall ultrastructure is broadly shared by a range of morphologically diverse acritarchs as well as some extant microalgae. The chemically resistant biopolymers forming the comparatively thick cell, together with the overall morphology support the interpretation of the microfossil as being in the resting stage in the life cycle. The set of features, morphological and ultrastructural, suggests closer relationship to green algae than dinoflagellates. [source]