Home About us Contact | |||
Mixed Solution (mixed + solution)
Selected AbstractsIntegrating an Enzyme-Entrapped Conducting Polymer Electrode and a Prereactor in a Microfluidic System for Sensing GlucoseELECTROANALYSIS, Issue 6 2008Po-Chin Nien Abstract In this study, the flow injection analysis was applied to the enzyme-entrapped electrode on a chip for sensing glucose. The on-chip microelectrode was fabricated by the standard photolithography in clean-room environment and the microfluidic channel height of 100,,m on the chip was formed by poly(dimethylsiloxane). The conducting polymer, poly(3,4-ethylenedioxythiophene), PEDOT, was electropolymerized to entrap the coexisting glucose oxidase (GOD) by cyclic voltammetry (CV). The amount of enzyme entrapped in the matrix measured spectroscopically was about 0.101,U/cm2. At a flow rate of 10,ml/hr, the working electrode (Pt/PEDOT/GOD, WE1) was set at 0.7,V (vs. Ag/AgCl) and sensing of H2O2 was carried out by injecting samples with various concentrations of glucose (Glu). A linear relationship between the sensing current and the glucose concentration, ranging from 1 to 20,mM, was obtained with a sensitivity of 8,nA mm,2 mM,1. The response time and the recovery time were about 30 and 230,s, respectively. For a single-potential test, the oxidation currents of 0.08,mM ascorbic acid (AA) and a blend of 0.08,mM AA and 10,mM Glu reached 31.3% and 145.5%, respectively, when compared with the oxidation current of 10,mM Glu alone. However, when a pre-reactor (WE2) was set at the same potential (0.7,V) before the main enzyme integrated electrode (WE1), the oxidation current for the above mixed solution reached 99.6% of the original one. [source] Affinity-Based Protein Surface Pattern Formation by Ligand Self-Selection from Mixed Protein SolutionsADVANCED FUNCTIONAL MATERIALS, Issue 19 2009Manish Dubey Abstract Photolithographically prepared surface patterns of two affinity ligands (biotin and chloroalkane) specific for two proteins (streptavidin and HaloTag, respectively) are used to spontaneously form high-fidelity surface patterns of the two proteins from their mixed solution. High affinity protein-surface self-selection onto patterned ligands on surfaces exhibiting low non-specific adsorption rapidly yields the patterned protein surfaces. Fluorescence images after protein immobilization show high specificity of the target proteins to their respective surface patterned ligands. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) imaging further supports the chemical specificity of streptavidin and HaloTag for their surface patterned ligands from mixed protein solutions. However, ToF-SIMS did detect some non-specific adsorption of bovine serum albumin, a masking protein present in excess in the adsorbing solutions, on the patterned surfaces. Protein amino acid composition, surface coverage, density, and orientation are important parameters that determine the relative ToF-SIMS fragmentation pattern yields. ToF-SIMS amino acid-derived ion fragment yields summed to produce surface images can reliably determine which patterned surface regions contain bound proteins, but do not readily discriminate between different co-planar protein regions. Principal component analysis (PCA) of these ToF-SIMS data, however, improves discrimination of ions specific to each protein, facilitating surface protein pattern identification and image contrast. [source] New supplying evaporation precursor method with CVDHEAT TRANSFER - ASIAN RESEARCH (FORMERLY HEAT TRANSFER-JAPANESE RESEARCH), Issue 5 2009Motohiro Oshima Abstract We propose a novel system of chemical vapor deposition (CVD), i.e., flash boiling spray CVD (SF-CVD) to eliminate several kinds of problems, such as the decomposition of precursors in the supply line and evaporator. In this method, liquid precursors are supplied directly to the vacuum chamber through an injector, just like fuel for an automobile engine, without any vaporizers, so as to induce an unsteady and intermittent flash boiling spray in the chamber. However, it is necessary to keep the lowest ambient pressure possible because the saturated vapor pressure of the precursors is very low. Thus, this is very useful for modifying the saturated vapor pressure of the precursors. A technique of lowering the vaporization pressure is proposed by mixing a more saturated vapor-pressure organic solvent with a precursor. To determine the principles underlying FS-CVD, we first formed SiO2 film on the Si substrate. A mixed solution of tetraethylorthosilicate (TEOS) and n-pentane was used as the mixing solution. The film thickness distribution of SiO2 film on a 100-mm-diameter Si wafer was ±4% using this method. Furthermore, this method enabled us to control film with various thicknesses by optimizing the injection duration, cycle, and injection cycle per second. © 2009 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/htj.20235 [source] Fabrication and Luminescent Properties of Nd3+ -Doped Lu2O3 Transparent Ceramics by Pressureless SinteringJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 10 2009Ding Zhou The fabrication of transparent Nd3+ ion-doped Lu2O3 ceramics is investigated by pressureless sintering under a flowing H2 atmosphere. The starting Nd-doped Lu2O3 nanocrystalline powder is synthesized by a modified coprecipitant processing using a NH4OH+NH4HCO3 mixed solution as the precipitant. The thermal decomposition behavior of the precipitate precursor is studied by thermogravimetric analysis and differential thermal analysis. After calcination at 1000°C for 2 h, monodispersed Nd3+:Lu2O3 powder is obtained with a primary particle size of about 40 nm and a specific surface area of 13.7 m2/g. Green compacts, free of additives, are formed from the as-synthesized powder by dry pressing followed by cold isostatic pressing. Highly transparent Nd3+:Lu2O3 ceramics are obtained after being sintered under a dry H2 atmosphere at 1880°C for 8 h. The linear optical transmittance of the polished transparent samples with a 1.4 mm thickness reaches 75.5% at the wavelength of 1080 nm. High-resolution transmission electron microscopy observations demonstrate a "clear" grain boundary between adjacent grains. The luminescent spectra showed that the absorption coefficient of the 3 at.% Nd-doped Lu2O3 ceramic at 807 nm reached 14 cm,1, while the emission cross section at 1079 nm was 6.5 × 10,20 cm2. [source] Preparation of Crystalline-Oriented Titania Photoelectrodes on ITO Glasses from a 2-Propanol,2,4-Pentanedione Solvent by Electrophoretic Deposition in a Strong Magnetic FieldJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 5 2009Mamiko Kawakita Crystal-oriented and crack-free thin TiO2 films with a good interfacial adhesion on indium,tin oxide glass substrates for photoelectrodes of dye-sensitized solar cells were fabricated by the constant voltage electrophoretic deposition (EPD) method in a strong magnetic field of 12 T generated by a superconducting magnet. A binder-free suspension for the EPD was prepared by dispersing TiO2 in a mixture of 2-propanol and 2,4-pentanedione (acetylacetone). The electrical conductivity, sedimentation rate, and the electrophoretic mobility were measured at varying ratios of the mixed solution. The optimized state of the suspension exhibiting the highest surface charge potential and producing deposits with the highest green density was obtained at the 50:50 mixing ratio. The TiO2 films were characterized by X-ray diffraction and scanning electron microscopic analyses. [source] Emulsifying properties of gelatin conjugated to pectin under alkaline conditionsJOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, Issue 5 2005Nickolaos G Diftis Abstract Gelatin,pectin mixed solution incubated under mild alkaline conditions for a period of 4 h exhibited an improvement of emulsion stability in terms of both droplet coalescence and serum separation. Application of SDS,PAGE provided evidence for gelatin,pectin hybrid formation possibly due to amide bonds between the lysine group residues of protein and the esterified carboxyl groups of the polysaccharide. The superior stabilizing properties of the heat-treated protein,polysaccharide conjugate is attributed to the enhancement of the repulsive steric forces operating between emulsion oil droplets, as a result of conjugate adsorption through their protein moiety. Copyright © 2004 Society of Chemical Industry [source] pH-Switchable Complexation between Double Hydrophilic Heteroarm Star Copolymers and a Cationic Block PolyelectrolyteMACROMOLECULAR CHEMISTRY AND PHYSICS, Issue 7 2008Zhishen Ge Abstract Double hydrophilic heteroarm star copolymers of poly(methacrylic acid) (PMAA) and poly(ethylene oxide) (PEO) were synthesized via atom-transfer radical polymerization (ATRP) using the "in-out" method. The synthesis consisted of three steps. Namely, ATRP was applied to the preparation of a star macroinitiator with PEO arms and a cross-linked core resulting from the polymerization of divinylbenzene (DVB) in the first step, chain extension with tert -butyl methacrylate (tBMA) under ATRP conditions, and subsequent hydrolysis of the tert -butyl groups afforded (PEO)n -PDVB-(PMAA)n heteroarm star copolymers with a cross-linked microgel core. This novel type of double hydrophilic heteroarm star copolymer can be considered as unimolecular micelles with hybrid coronas. The star copolymers exhibited pH-dependent solubility in water, being soluble at high pH and insoluble at low pH, due to the formation of hydrogen-bonded complexes between the PEO and PMAA arms. A mixed solution of the heteroarm star copolymer and a PEO- b -PQDMA diblock copolymer, where PQDMA is poly(2-(dimethylamino)ethyl methacrylate) fully quaternized with methyl iodide, remained stable in the whole pH range, and exhibited an intriguing pH-switchable complexation behavior accompanied with structural rearrangement. [source] Studies of oxygen uptake on O2 scavengers prepared from different iron-containing parent substancesPACKAGING TECHNOLOGY AND SCIENCE, Issue 2 2002Zenon Foltynowicz Abstract Temperature-programmed reduction (TPR) measurements were performed for iron oxalates, iron(III) hydroxide (both pure and with additives) and iron(II, III) oxide. On the ground of TPR curves, reduction temperatures of the iron-containing parent substances were chosen followed by oxygen uptake determination. Comparison of oxygen uptakes points to the use of Fe(OH)3 and Fe3O4 as more advantageous than that of iron oxalates. Co-precipitation from a mixed solution of iron and manganese salts results in a product which is more resistant to particle agglomeration at elevated temperatures than that obtained byprecipitation from solution of iron salt alone. Copyright © 2002 JohnWiley & Sons, Ltd. [source] Site-selective anodic etching of InP substrate using self-organized spheres as maskPHYSICA STATUS SOLIDI (A) APPLICATIONS AND MATERIALS SCIENCE, Issue 4 2010Takayuki Yokoyama Abstract Ordered microstructures were formed on an InP substrate by metal-assisted chemical etching or anodic etching using a layer of colloidal crystals consisting of polystyrene spheres as a mask. When the metal-assisted chemical etching of the InP substrate was carried out in a mixed solution of H2SO4/H2O2 using a Pt honeycomb pattern as a catalyst, obtained by ion sputtering through the mask on the substrate, InP column arrays with a close-packed configuration having an ordered periodicity were formed. Furthermore, by anodic etching at the optimum HCl concentration with a layer of colloidal crystals as a mask, InP disk arrays or pillar arrays were fabricated. [source] Synthesis of Novel Phosphorylated Daidzein Derivatives and ESI Investigation on Their Non-Covalent Complexes with LysozymeCHINESE JOURNAL OF CHEMISTRY, Issue 7 2007Xiao-Lan Chen Abstract Daidzein (7,4,-dihydroxyisoflavone) was phosphorylated by a modified Atherton-Todd reaction. The structures of the five target product, were determined by X-ray, IR, NMR and ESI-MS. Electrospray ionization results show that in the gas phase all the phosphorylated daidzein derivatives could form non-covalent complexes with the protein lysozyme, while non-covalent complexes were not detected in the mixed solution of daidzein with lysozyme. Relative affinity of every non-covalent complex was obtained according to its different decomposition orifice voltage. [source] Photochemical treatment of a mixed PAH/surfactant solution for surfactant recovery and reuseENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY, Issue 4 2001Youn-Joo An Because of their hydrophobic nature, polycyclic aromatic hydrocarbons (PAHs) are generally thought to be unavailable to in situ remediation processes, and solubilization of PAHs by surfactants is usually recommended. However, mixed PAH/surfactant solutions are wastewaters that need a post-treatment after solubilization. In this study, mixed solutions of PAH and perfluorinated surfactant (PFS) were photochemically treated with and without hydrogen peroxide (H2O2), and the subsequent recovery and reuse of surfactant solutions were demonstrated. Phenanthrene and pyrene were selected as representative PAHs and lithium perfluorooctanesulfonate (LiFOS) as a PFS. Direct photolysis (UV only) and UV/H2O2 process enhanced the PAH degradation in LiFOS solutions compared to water. Both treatment processes selectively degraded PAHs without damaging PFS, suggesting that PFS withstands photolysis. Overall, it is demonstrated that UV and UV/H2O2 processes of mixed PAH/PFS solutions are effective for surfactant recovery/reuse, as well as PAH degradation. [source] The kinetics of complex formation between Ti(IV) and hydrogen peroxideINTERNATIONAL JOURNAL OF CHEMICAL KINETICS, Issue 8 2007Daniel W. O'Sullivan The kinetics of the formation of the titanium-peroxide [TiO2+2] complex from the reaction of Ti(IV)OSO4 with hydrogen peroxide and the hydrolysis of hydroxymethyl hydroperoxide (HMHP) were examined to determine whether Ti(IV)OSO4 could be used to distinguish between hydrogen peroxide and HMHP in mixed solutions. Stopped-flow analysis coupled to UV-vis spectroscopy was used to examine the reaction kinetics at various temperatures. The molar absorptivity (,) of the [TiO2+2] complex was found to be 679.5 ± 20.8 L mol,1 cm,1 at 405 nm. The reaction between hydrogen peroxide and Ti(IV)OSO4 was first order with respect to both Ti(IV)OSO4 and H2O2 with a rate constant of 5.70 ± 0.18 × 104 M,1 s,1 at 25°C, and an activation energy, Ea = 40.5 ± 1.9 kJ mol,1. The rate constant for the hydrolysis of HMHP was 4.3 × 10,3 s,1 at pH 8.5. Since the rate of complex formation between Ti(IV)OSO4 and hydrogen peroxide is much faster than the rate of hydrolysis of HMHP, the Ti(IV)OSO4 reaction coupled to time-dependent UV-vis spectroscopic measurements can be used to distinguish between hydrogen peroxide and HMHP in solution. © 2007 Wiley Periodicals, Inc. Int J Chem Kinet 39: 457,461, 2007 [source] Hierarchical structures formed by partially crystalline polymers in solution: from fundamentals to applications , a combined conventional, focusing and ultra-small-angle neutron scattering studyJOURNAL OF APPLIED CRYSTALLOGRAPHY, Issue 2007Dietmar Schwahn Multilevel aggregates with characteristic sizes covering four orders of magnitude, from 1,nm to 10,µm, are formed upon cooling decane solutions of poly(ethylene-butene) random copolymers (designated as PEB- n, where n is the number of ethyl side branches per 100 backbone C atoms) and wax-containing mixed solutions. The partially crystalline PEB-7.5 copolymers form two distinct morphologies that evolve on a range of length scales. When these polymers are mixed with wax molecules having a crystallization point lower than the polymer aggregation temperature, a hierarchy of morphologies evolves on decreasing the temperature. The multilevel structures were elucidated by combining conventional small-angle neutron scattering, focusing small-angle neutron scattering and ultra-small-angle neutron scattering investigations with microscopy. Contrast-matching analysis of the wax and copolymer components within the common morphologies revealed the wax-crystal modification capacity of the PEB-7.5 copolymers. Since the copolymers limit the growth of wax crystals, they are potential pour-point depressants for the fuel industry. [source] PHYSICAL, SENSORY AND FLOW PROPERTIES OF WHEAT STARCH,DAIRY BY-PRODUCT SPRAY-DRIED PEKMEZ MIXTURESJOURNAL OF TEXTURE STUDIES, Issue 2 2008DURMU ABSTRACT Pekmez, also known as a concentrated grape juice, was spray dried in a laboratory-type pilot drying unit to obtain pekmez powder (PP). The flow characteristics of PP, wheat starch (WS) and some dairy by-products (whey powder, skim milk powder, calcium caseinate and sodium caseinate) systems as binary and ternary mixtures were studied. The empirical power law model fitted the apparent viscosity,rotational speed data. PP,dairy by-product and WS,dairy by-product mixed solutions exhibited a shear-thinning behavior at 21C with flow behavior index (n) values of 0.86 , n , 0.92 and 0.06 , n , 0.27, respectively. WS,dairy by-product mixed solutions showed high shear-thinning behavior with the highest consistency index (k = 25,425,180,599 mPa·sn). However, PP,WS and PP,WS,dairy by-product mixed solutions at the same temperature exhibited the shear-thickening behavior with flow behavior index (n) values of 1.05 , n , 1.18. PRACTICAL APPLICATIONS Pekmez has become popular as a healthy food product; therefore, its rheologic properties were extensively studied by some researchers. However, pekmez powder (PP) is a new product and has not been produced yet in the food industry. Spray drying of foods has been spread recently in almost all food industry branches because it provides some advantages such as extending the shelf life, storage stability, decreasing the storage costs of the food products, etc. For this reason, production technology is first developed; PP is produced and studied in this study. There is no published data informing the rheologic, physical and sensory properties of pekmez or PP as binary and ternary mixtures with other components such as wheat starch (WS) and any dairy by-product. The purpose of this study was mainly to characterize the rheologic behavior of the PP,WS,dairy by-product mixed solutions and determine their physical and sensory properties. [source] |