Mixed Finite Element Method (mixed + finite_element_method)

Distribution by Scientific Domains


Selected Abstracts


A mixed finite element solver for liquid,liquid impacts

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, Issue 8 2004
Enrico Bertolazzi
Abstract The impact of a liquid column on a liquid surface initially at rest is numerically modelled to describe air entrapment and bubble formation processes. The global quantities of interest are evaluated in the framework of the potential theory. The numerical method couples a potential flow solver based on a Mixed Finite Element Method with an Ordinary Differential Equation solver discretized by the Crank,Nicholson scheme. The capability of the method in solving liquid,liquid impacts is illustrated in two numerical experiments taken from literature and a good agreement with the literature data is obtained. Copyright © 2004 John Wiley & Sons, Ltd. [source]


A new mixed finite element method for poro-elasticity

INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 6 2008
Maria Tchonkova
Abstract Development of robust numerical solutions for poro-elasticity is an important and timely issue in modern computational geomechanics. Recently, research in this area has seen a surge in activity, not only because of increased interest in coupled problems relevant to the petroleum industry, but also due to emerging applications of poro-elasticity for modelling problems in biomedical engineering and materials science. In this paper, an original mixed least-squares method for solving Biot consolidation problems is developed. The solution is obtained via minimization of a least-squares functional, based upon the equations of equilibrium, the equations of continuity and weak forms of the constitutive relationships for elasticity and Darcy flow. The formulation involves four separate categories of unknowns: displacements, stresses, fluid pressures and velocities. Each of these unknowns is approximated by linear continuous functions. The mathematical formulation is implemented in an original computer program, written from scratch and using object-oriented logic. The performance of the method is tested on one- and two-dimensional classical problems in poro-elasticity. The numerical experiments suggest the same rates of convergence for all four types of variables, when the same interpolation spaces are used. The continuous linear triangles show the same rates of convergence for both compressible and entirely incompressible elastic solids. This mixed formulation results in non-oscillating fluid pressures over entire domain for different moments of time. The method appears to be naturally stable, without any need of additional stabilization terms with mesh-dependent parameters. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Mixed finite element formulation of algorithms for double-diffusive convection in a fluid-saturated porous medium

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, Issue 11 2007
J. C.-F.
Abstract The consistent splitting scheme involving a mixed finite element method for considering the influence of the Forchheimer-extended Brinkman,Darcy model in the momentum equation is applied to double-diffusive convection in a fluid-saturated porous medium. It is shown that the method is robust and can accurately predict flow, pressure distribution, temperature and concentration fields. The numerical scheme may be an alternative to some other existing methods for the solution of porous thermosolutal convection problems since its implementation is very handy. Copyright © 2006 John Wiley & Sons, Ltd. [source]


On the a priori and a posteriori error analysis of a two-fold saddle-point approach for nonlinear incompressible elasticity

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 8 2006
Gabriel N. Gatica
Abstract In this paper, we reconsider the a priori and a posteriori error analysis of a new mixed finite element method for nonlinear incompressible elasticity with mixed boundary conditions. The approach, being based only on the fact that the resulting variational formulation becomes a two-fold saddle-point operator equation, simplifies the analysis and improves the results provided recently in a previous work. Thus, a well-known generalization of the classical Babu,ka,Brezzi theory is applied to show the well-posedness of the continuous and discrete formulations, and to derive the corresponding a priori error estimate. In particular, enriched PEERS subspaces are required for the solvability and stability of the associated Galerkin scheme. In addition, we use the Ritz projection operator to obtain a new reliable and quasi-efficient a posteriori error estimate. Finally, several numerical results illustrating the good performance of the associated adaptive algorithm are presented. Copyright © 2006 John Wiley & Sons, Ltd. [source]


A two-grid method for expanded mixed finite-element solution of semilinear reaction,diffusion equations

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 2 2003
Yanping Chen
Abstract We present a scheme for solving two-dimensional semilinear reaction,diffusion equations using an expanded mixed finite element method. To linearize the mixed-method equations, we use a two-grid algorithm based on the Newton iteration method. The solution of a non-linear system on the fine space is reduced to the solution of two small (one linear and one non-linear) systems on the coarse space and a linear system on the fine space. It is shown that the coarse grid can be much coarser than the fine grid and achieve asymptotically optimal approximation as long as the mesh sizes satisfy H=O(h1/3). As a result, solving such a large class of non-linear equation will not be much more difficult than solving one single linearized equation. Copyright © 2003 John Wiley & Sons, Ltd. [source]


Positive-definite q -families of continuous subcell Darcy-flux CVD(MPFA) finite-volume schemes and the mixed finite element method

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 4 2008
Michael G. Edwards
Abstract A new family of locally conservative cell-centred flux-continuous schemes is presented for solving the porous media general-tensor pressure equation. A general geometry-permeability tensor approximation is introduced that is piecewise constant over the subcells of the control volumes and ensures that the local discrete general tensor is elliptic. A family of control-volume distributed subcell flux-continuous schemes are defined in terms of the quadrature parametrization q (Multigrid Methods. Birkhauser: Basel, 1993; Proceedings of the 4th European Conference on the Mathematics of Oil Recovery, Norway, June 1994; Comput. Geosci. 1998; 2:259,290), where the local position of flux continuity defines the quadrature point and each particular scheme. The subcell tensor approximation ensures that a symmetric positive-definite (SPD) discretization matrix is obtained for the base member (q=1) of the formulation. The physical-space schemes are shown to be non-symmetric for general quadrilateral cells. Conditions for discrete ellipticity of the non-symmetric schemes are derived with respect to the local symmetric part of the tensor. The relationship with the mixed finite element method is given for both the physical-space and subcell-space q -families of schemes. M -matrix monotonicity conditions for these schemes are summarized. A numerical convergence study of the schemes shows that while the physical-space schemes are the most accurate, the subcell tensor approximation reduces solution errors when compared with earlier cell-wise constant tensor schemes and that subcell tensor approximation using the control-volume face geometry yields the best SPD scheme results. A particular quadrature point is found to improve numerical convergence of the subcell schemes for the cases tested. Copyright © 2007 John Wiley & Sons, Ltd. [source]


On the mixed finite element method with Lagrange multipliers

NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, Issue 2 2003
Ivo Babu
Abstract In this note we analyze a modified mixed finite element method for second-order elliptic equations in divergence form. As a model we consider the Poisson problem with mixed boundary conditions in a polygonal domain of R2. The Neumann (essential) condition is imposed here in a weak sense, which yields the introduction of a Lagrange multiplier given by the trace of the solution on the corresponding boundary. This approach allows to handle nonhomogeneous Neumann boundary conditions, theoretically and computationally, in an alternative and usually easier way. Then we utilize the classical Babu,ka-Brezzi theory to show that the resulting mixed variational formulation is well posed. In addition, we use Raviart-Thomas spaces to define the associated finite element method and, applying some elliptic regularity results, we prove the stability, unique solvability, and convergence of this discrete scheme, under appropriate assumptions on the mesh sizes. Finally, we provide numerical results illustrating the performance of the algorithm for smooth and singular problems. © 2003 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 19: 192,210, 2003 [source]


Refined mixed finite element method for the elasticity problem in a polygonal domain

NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, Issue 3 2002
M. Farhloul
Abstract The purpose of this article is to study a mixed formulation of the elasticity problem in plane polygonal domains and its numerical approximation. In this mixed formulation the strain tensor is introduced as a new unknown and its symmetry is relaxed by a Lagrange multiplier, which is nothing else than the rotation. Because of the corner points, the displacement field is not regular in general in the vicinity of the vertices but belongs to some weighted Sobolev space. Using this information, appropriate refinement rules are imposed on the family of triangulations in order to recapture optimal error estimates. Moreover, uniform error estimates in the Lamé coefficient , are obtained for , large. © 2002 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 18: 323,339, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/num.10009 [source]


A splitting positive definite mixed element method for miscible displacement of compressible flow in porous media

NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, Issue 3 2001
Danping Yang
Abstract A miscible displacement of one compressible fluid by another in a porous medium is governed by a nonlinear parabolic system. A new mixed finite element method, in which the mixed element system is symmetric positive definite and the flux equation is separated from pressure equation, is introduced to solve the pressure equation of parabolic type, and a standard Galerkin method is used to treat the convection-diffusion equation of concentration of one of the fluids. The convergence of the approximate solution with an optimal accuracy in L2 -norm is proved. © 2001 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 17: 229,249, 2001 [source]